The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investi- gated by using a nonlocal crystal plasticity model which considers iso...The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investi- gated by using a nonlocal crystal plasticity model which considers isotropic and kinematic hardening produced by plastic strain gradients. It was found that pro- nounced strain gradients occur in the grain boundary region even under homo- geneous loading. The isotropic hardening of strain gradients strongly influences the global stress-strain diagram while the kinematic hardening of strain gradi- ents influences the local deformation behaviour. It is found that the additional strain gradient hardening is not only dependent on the block width but also on the misorientations or the deformation incompatibilities in adjacent blocks.展开更多
A simple model of three coupled oscillators as an approximation of main modes behaviors in a spatial extended system is proposed. Multi-looping generalized synchronization and drift intermittent lag phase synchronizat...A simple model of three coupled oscillators as an approximation of main modes behaviors in a spatial extended system is proposed. Multi-looping generalized synchronization and drift intermittent lag phase synchronization phenomena are found in this simple model. For a certain of parameters in which chaotic-like intermittent behavior exhibit the amplitudes and phases of three modes are controlled to be synchronized states via coupling them with an external periodic mode.展开更多
Fluidized beds frequently involve non-spherical particles, especially if biomass is present. For spheri- cal particles, numerous experimental investigations have been reported in the literature. In contrast, complex-s...Fluidized beds frequently involve non-spherical particles, especially if biomass is present. For spheri- cal particles, numerous experimental investigations have been reported in the literature. In contrast, complex-shaped particles have received much less attention. There is a lack of understanding of how par- ticle shape influences flow-regime transitions. In this study, differently shaped Geldart group D particles are experimentally examined. Bed height, pressure drop, and their respective fluctuations are analyzed. With increasing deviation of particle shape from spheres, differences in flow-regime transitions occur with a tendency for the bed to form channels instead of undergoing smooth fluidization. The correlations available in the literature for spherical particles are limited in their applicability when used to predict regime changes for complex-shaped particles. Hence, based on existing correlations, improvements are derived.展开更多
文摘The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investi- gated by using a nonlocal crystal plasticity model which considers isotropic and kinematic hardening produced by plastic strain gradients. It was found that pro- nounced strain gradients occur in the grain boundary region even under homo- geneous loading. The isotropic hardening of strain gradients strongly influences the global stress-strain diagram while the kinematic hardening of strain gradi- ents influences the local deformation behaviour. It is found that the additional strain gradient hardening is not only dependent on the block width but also on the misorientations or the deformation incompatibilities in adjacent blocks.
文摘A simple model of three coupled oscillators as an approximation of main modes behaviors in a spatial extended system is proposed. Multi-looping generalized synchronization and drift intermittent lag phase synchronization phenomena are found in this simple model. For a certain of parameters in which chaotic-like intermittent behavior exhibit the amplitudes and phases of three modes are controlled to be synchronized states via coupling them with an external periodic mode.
文摘Fluidized beds frequently involve non-spherical particles, especially if biomass is present. For spheri- cal particles, numerous experimental investigations have been reported in the literature. In contrast, complex-shaped particles have received much less attention. There is a lack of understanding of how par- ticle shape influences flow-regime transitions. In this study, differently shaped Geldart group D particles are experimentally examined. Bed height, pressure drop, and their respective fluctuations are analyzed. With increasing deviation of particle shape from spheres, differences in flow-regime transitions occur with a tendency for the bed to form channels instead of undergoing smooth fluidization. The correlations available in the literature for spherical particles are limited in their applicability when used to predict regime changes for complex-shaped particles. Hence, based on existing correlations, improvements are derived.