Microfuidic systems have been widely utilized in high-throughput biology analysis,but thedificulties in iquid manipulation and cell cultivation limit its application.This work has developed a new digital microfluidic(...Microfuidic systems have been widely utilized in high-throughput biology analysis,but thedificulties in iquid manipulation and cell cultivation limit its application.This work has developed a new digital microfluidic(DMF)system for on-demand droplet control.By adopting anextending-depth-of-field(EDoF)phase modulator to the optical system,the entire depth of themicrofluidic channel can be covered in one image without any refocusing process,ensuring that 95%of the particles in the droplet are captured within three shots together with shaking pro-cesses.With this system,suspension droplets are generated and droplets containing only oneyeast cll can be recognized,then each single cell is cultured in the array of the chip.Byobservingtheir growth in cell numbers and the green fluorescence protein(GFP)production via fluorescence imaging,the single cell with the highest production can be identified.The results haveproved the heterogeneity of yeast cells,and showed that the combined system can be applied forrapid single-cell sorting,cultivation,and analysis.展开更多
基金supported by the National Key R&D Program of China(2021YFF0502900)the National Natural Science Foundation of China(62175034,62175036)+7 种基金the Anhui Province KeyR&D Project(202003a07020020)the ShanghaiNatural Science Foundation(grant No.20ZR1405100)the Science and Technology Research Program ofShanghai(grant No.19DZ2282100)the Shanghaikey discipline construction plan(2020-2022)(grantNo.GWV-10.1-XK01)the Shanghai EngineeringTechnology Research Center of Hair Medicine(19DZ2250500)the Medical Engineering Fund of Fudan University(yg2021-022)the Pioneering Project of Academy for Engineering and Technology,the Fudan University(gy2018-001,gy2018-002)the Yantai Returned Scholars'Pioneering Park.
文摘Microfuidic systems have been widely utilized in high-throughput biology analysis,but thedificulties in iquid manipulation and cell cultivation limit its application.This work has developed a new digital microfluidic(DMF)system for on-demand droplet control.By adopting anextending-depth-of-field(EDoF)phase modulator to the optical system,the entire depth of themicrofluidic channel can be covered in one image without any refocusing process,ensuring that 95%of the particles in the droplet are captured within three shots together with shaking pro-cesses.With this system,suspension droplets are generated and droplets containing only oneyeast cll can be recognized,then each single cell is cultured in the array of the chip.Byobservingtheir growth in cell numbers and the green fluorescence protein(GFP)production via fluorescence imaging,the single cell with the highest production can be identified.The results haveproved the heterogeneity of yeast cells,and showed that the combined system can be applied forrapid single-cell sorting,cultivation,and analysis.