A series of model catalysts were obtained by treating commercial fresh and spent catalysts unloaded from the factory with different methods, including green oil dipping, extraction and high-temperature regeneration;fi...A series of model catalysts were obtained by treating commercial fresh and spent catalysts unloaded from the factory with different methods, including green oil dipping, extraction and high-temperature regeneration;finally, the deactivation behavior of the commercial catalyst for acetylene hydrogenation were studied. The influence of various possible deactivation factors on the catalytic performance was elucidated via detailed structural characterization, surface composition analysis, and activity evaluation.The results showed that green oil, carbon deposit and sintering of active metal were the main reasons for deactivation, among which green oil and carbon deposit led to rapid deactivation, while the activity could be recovered after regeneration by high-temperature calcination. The sintering of active metal components was attributed to the high-temperature regeneration in hydrothermal conditions, which was slow but irreversible and accounted for permanent deactivation. Thus, optimizing the regeneration is expected to extend the service life of the commercial catalyst.展开更多
Ternary lithium-ion batteries(LIBs),widely used in new energy vehicles and electronic products,are known for their high en-ergy density,wide operating temperature range,and excellent cycling performance.With the rapid...Ternary lithium-ion batteries(LIBs),widely used in new energy vehicles and electronic products,are known for their high en-ergy density,wide operating temperature range,and excellent cycling performance.With the rapid development of the battery industry,the recycling of spent ternary LIBs has become a hot topic because of their economic value and environmental concerns.To date,a con-siderable amount of literature has reported on the recycling of spent ternary LIBs designed to provide an efficient,economical,and envir-onmentally friendly method for battery recycling.This article examines the latest developments in various technologies for recycling spent ternary LIBs in both research and practical production,including pretreatment,pyrometallurgy,hydrometallurgy,pyro-hydrometallurgy,and direct regeneration.Suggestions for addressing challenges based on the benefits and disadvantages of each method are made.Finally,through a comparison of the feasibility and economic benefits of various technologies,the challenges faced during battery recycling are summarized,and future development directions are proposed.展开更多
The commercial application of a novel RFCC catalyst HSC used in an 1.4 Mt/a RFCC unit at a refinery A was introduced. The application results show that in comparison with the base catalyst, the yield of dry gas and sl...The commercial application of a novel RFCC catalyst HSC used in an 1.4 Mt/a RFCC unit at a refinery A was introduced. The application results show that in comparison with the base catalyst, the yield of dry gas and slurry was reduced, while the total liquid yield, gasoline yield and LPG yield increased by 1.34, 5.05 and 1.43 percentage points,respectively. The properties of the products showed no significant change while the anti-abrasion strength of the catalyst was relatively high. Based on the mid-term calibration test, the summary calibration test and the daily statistics of long term industrial application practice, the HSC catalyst features a strong conversion ability of heavy oil, a high gasoline yield, a satisfactory product distribution and a good selectivity.展开更多
In order to reduce the olefin content in gasoline manufactured by the MGG (Maximizing Liquefied Gas and Gasoline) process while retaining the LPG yield, RIPP has developed a novel catalyst consisting of a more pore-...In order to reduce the olefin content in gasoline manufactured by the MGG (Maximizing Liquefied Gas and Gasoline) process while retaining the LPG yield, RIPP has developed a novel catalyst consisting of a more pore-opened matrix and the modified Y-zeolite and the ZRP zeolite modified with metal oxides. Test results have revealed that compared with the commercial catalyst RAG under comparable reaction conditions the reaction conversion rate and product distribution provided by the novel catalyst were similar, but the olefin content in gasoline obtained thereof was decreased with the octane rating unchanged along with a slight reduction of olefin content in the LPG fraction. The hydrothermal stability of the novel catalyst was better than the commercial catalyst RAG.展开更多
基金the financial support from the Sinopec Catalyst Co.Ltd.,China。
文摘A series of model catalysts were obtained by treating commercial fresh and spent catalysts unloaded from the factory with different methods, including green oil dipping, extraction and high-temperature regeneration;finally, the deactivation behavior of the commercial catalyst for acetylene hydrogenation were studied. The influence of various possible deactivation factors on the catalytic performance was elucidated via detailed structural characterization, surface composition analysis, and activity evaluation.The results showed that green oil, carbon deposit and sintering of active metal were the main reasons for deactivation, among which green oil and carbon deposit led to rapid deactivation, while the activity could be recovered after regeneration by high-temperature calcination. The sintering of active metal components was attributed to the high-temperature regeneration in hydrothermal conditions, which was slow but irreversible and accounted for permanent deactivation. Thus, optimizing the regeneration is expected to extend the service life of the commercial catalyst.
基金sponsored by the National Natural Science Foundation of China(Nos.52204412 and U2002212)the National Key R&D Program of China(No.2021YFC 1910504)the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-031A1).
文摘Ternary lithium-ion batteries(LIBs),widely used in new energy vehicles and electronic products,are known for their high en-ergy density,wide operating temperature range,and excellent cycling performance.With the rapid development of the battery industry,the recycling of spent ternary LIBs has become a hot topic because of their economic value and environmental concerns.To date,a con-siderable amount of literature has reported on the recycling of spent ternary LIBs designed to provide an efficient,economical,and envir-onmentally friendly method for battery recycling.This article examines the latest developments in various technologies for recycling spent ternary LIBs in both research and practical production,including pretreatment,pyrometallurgy,hydrometallurgy,pyro-hydrometallurgy,and direct regeneration.Suggestions for addressing challenges based on the benefits and disadvantages of each method are made.Finally,through a comparison of the feasibility and economic benefits of various technologies,the challenges faced during battery recycling are summarized,and future development directions are proposed.
文摘The commercial application of a novel RFCC catalyst HSC used in an 1.4 Mt/a RFCC unit at a refinery A was introduced. The application results show that in comparison with the base catalyst, the yield of dry gas and slurry was reduced, while the total liquid yield, gasoline yield and LPG yield increased by 1.34, 5.05 and 1.43 percentage points,respectively. The properties of the products showed no significant change while the anti-abrasion strength of the catalyst was relatively high. Based on the mid-term calibration test, the summary calibration test and the daily statistics of long term industrial application practice, the HSC catalyst features a strong conversion ability of heavy oil, a high gasoline yield, a satisfactory product distribution and a good selectivity.
文摘In order to reduce the olefin content in gasoline manufactured by the MGG (Maximizing Liquefied Gas and Gasoline) process while retaining the LPG yield, RIPP has developed a novel catalyst consisting of a more pore-opened matrix and the modified Y-zeolite and the ZRP zeolite modified with metal oxides. Test results have revealed that compared with the commercial catalyst RAG under comparable reaction conditions the reaction conversion rate and product distribution provided by the novel catalyst were similar, but the olefin content in gasoline obtained thereof was decreased with the octane rating unchanged along with a slight reduction of olefin content in the LPG fraction. The hydrothermal stability of the novel catalyst was better than the commercial catalyst RAG.