期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Penetration Depth of Torpedo Anchor in Two-Layered Cohesive Soil Bed by Free Fall 被引量:5
1
作者 WANG Cheng ZHANG Min-xi YU Guo-liang 《China Ocean Engineering》 SCIE EI CSCD 2018年第6期706-717,共12页
The penetration depth of torpedo anchor in two-layered soil bed was experimentally investigated. A total of 177 experimental data were obtained in laboratory by varying the undrained shear strength of the two-layered ... The penetration depth of torpedo anchor in two-layered soil bed was experimentally investigated. A total of 177 experimental data were obtained in laboratory by varying the undrained shear strength of the two-layered soil and the thickness of the top soil layer. The geometric parameters of the anchor and the soil properties(the liquid limit, plastic limit, specific gravity, undrained shear strength, density, and water content) were measured. Based on the energy analysis and present test data, an empirical formula to predict the penetration depth of torpedo anchor in two-layered soil bed was proposed. The proposed formula was extensively validated by laboratory and field data of previous researchers. The results were in good agreement with those obtained for two-layered and single-layered soil bed.Finally, a sensitivity analysis on the parameters in the formula was performed. 展开更多
关键词 torpedo anchor penetration depth two-layered soil bed
下载PDF
Maximum Force of Inclined Pullout of A Torpedo Anchor in Cohesive Beds 被引量:3
2
作者 WANG Cheng CHEN Xiao-hui YU Guo-liang 《China Ocean Engineering》 SCIE EI CSCD 2019年第3期333-343,共11页
Torpedo anchors have been used in mooring systems for deep-water oil and gas projects owing to their prominent advantages, such as low cost and easy installation. The maximum force of torpedo anchors is crucial not on... Torpedo anchors have been used in mooring systems for deep-water oil and gas projects owing to their prominent advantages, such as low cost and easy installation. The maximum force of torpedo anchors is crucial not only to the safety and stability of vessels and other marine facilities, but also for an economical design. It is necessary to develop reliable formula for fast predicting their maximum inclined force of a torpedo anchor in cohesive beds. In this study, the maximum inclined force of a torpedo anchor vertically embedded in cohesive beds was extensively investigated. 316 sets of inclined pullout laboratory tests were carried out for 9 differently shaped torpedo anchors which were vertically embedded in different cohesive beds. The loading curves were automatically acquisitioned and their characteristics were analyzed. The load angle relative to the horizontal varied from 20° to 90°. A new formula for fast calculating the maximum inclined force of the torpedo anchor vertically embedded in cohesive beds was obtained based on force analysis and a nonlinear regression on the data from the present and other studies. Effect aspects on the tests are discussed and further studies are highlighted. 展开更多
关键词 TORPEDO ANCHOR MAXIMUM inclined FORCE COHESIVE bed load angle EMBEDMENT depth
下载PDF
Experimental Study on the Viscosity of Soft Cohesive Sediments Around A Vibrating Pillar 被引量:1
3
作者 DONG Chuan-ming YU Guo-liang +1 位作者 ZHANG Huai-xin ZHANG Min-xi 《China Ocean Engineering》 SCIE EI CSCD 2022年第2期289-298,共10页
Offshore structures are subject to environmental loads such as waves,currents,or wind,which may induce cyclic lateral vibration at the foundations.These cyclic vibration loadings may affect the rheological property of... Offshore structures are subject to environmental loads such as waves,currents,or wind,which may induce cyclic lateral vibration at the foundations.These cyclic vibration loadings may affect the rheological property of the sediments adjacent to the foundation and the stability of the structures.This is especially true when the structures are founded on cohesive sedimentary bed.In this study,the viscosity of soft cohesive sediments adjacent to a vibrating pillar was considered,and as a primary index of the rheological characteristics of the sediments.The investigation was performed using the sinking ball method.The experimental findings indicated that the viscosity of cohesive sediments decrease with increase of the liquidity index and vibration intensity.A simple semi-empirical formula was proposed.The structures of the cohesive sediments were destroyed due to the mechanical vibration,and the sediments were fluidized during vibration loads.The shear strength of the cohesive sediments decreased with increased vibration intensity,not only because of the increased pore water pressure but also the decreased viscosity of cohesive sediments following sediment fluidization. 展开更多
关键词 cohesive sediment vibration intensity viscosity coefficient FLUIDIZATION liquidity index
下载PDF
Correlation Between Yield Stress of Silty Mud Sediments and Continuous Oscillatory Shearing Properties
4
作者 CHEN Xiao-hui ZHANG Min-xi +2 位作者 YUE Shao-lin ZHOU Huan YU Guo-liang 《China Ocean Engineering》 SCIE EI CSCD 2022年第2期223-232,共10页
Analyzing the rheological properties of silty beds subjected to continuous oscillatory shear loading is crucial for understanding the morphological deformation of the seabed and ensuring safety in geological and marin... Analyzing the rheological properties of silty beds subjected to continuous oscillatory shear loading is crucial for understanding the morphological deformation of the seabed and ensuring safety in geological and marine engineering applications.In this study,the effects of oscillatory shearing properties on the yield stress(S_(u))of silty sediments were quantitatively investigated.The effects of oscillatory shear strength(0-3),water content(26.6%-70.84%),and particle diameter(8.79-50μm)were examined extensively through a series of laboratory tests.The results indicated that the three aforementioned parameters were the major factors that affected the rheological characteristics of silty sediments.Furthermore,their effects could be elucidated using the yield stress of cohesive sediments as the indicator parameter.The ratio of yield stress(S_(u)/S_(u0))varied as the oscillatory shear strength increased up to a critical value,Λ_(cr).S_(u)bsequently,the ratio remained at a constant value.It was deduced that the yield stress decreased with increasing oscillatory shear strength forΛ<Λ_(cr),when the sediments were in a non-equilibrium fluidization stage.WhenΛ>Λ_(cr),the sediments entered an equilibrium fluidization stage,and the yield stress remained almost constant,irrespective of the oscillatory shear strength.Furthermore,during the equilibrium fluidization stage,it was observed that the ratio S_(u)/S_(u0)did not vary with water content but decreased as the particle diameter increased.Finally,based on regression analysis of the experimental data for non-equilibrium and equilibrium fluidization stages,a correlation between yield stress of silty sediments and continuous oscillatory shearing properties was proposed.This correlation can aid in understanding the changes in solid resistance and assessing safety in piling engineering.Furthermore,it can provide a theoretical guidance for reducing soil resistance in marine structures using mechanical vibrations. 展开更多
关键词 silty sediments yield stress water content particle diameter oscillatory shear strength
下载PDF
RANSE-based simulation and analysis of scale effects on open-water performance of the PPTC-II benchmark propeller 被引量:3
5
作者 Xiao-Qian Dong Wei Li +1 位作者 Chen-Jun Yang Francis Noblesse 《Journal of Ocean Engineering and Science》 SCIE 2018年第3期186-204,共19页
This paper presents our numerical study of the scale effects on a tip-rake propeller,the PPTC-II,based on the RANS simulations using software FLUENT 6.3.The low Re option in SST k-ωmodel is adopted at model scale,tog... This paper presents our numerical study of the scale effects on a tip-rake propeller,the PPTC-II,based on the RANS simulations using software FLUENT 6.3.The low Re option in SST k-ωmodel is adopted at model scale,together with fine prism grids to resolve the viscous sub-layer.At full scale,standard wall function is adopted.The scale-effect corrections yielded by our RANS simulations are compared with those obtained from the ITTC method.To explain the CFD results,an analysis of sectional forces is performed.To investigate how the tip rake influences propeller scale effects,the geometry of PPTC-II is modified by removing the tip rake only,and the RANS-predicted scale effects for the modified propeller,PPTC-II-m,are compared with those for the PPTC-II.The study indicates that the scale effect on propeller thrust can be as important as that on the torque;somehow the RANS-and ITTC-based predictions for full-scale efficiency agree quite well;the tip-rake reduces tip loading and tip vortex strength,and brings about large differences in the scale effects as compared with the propeller without tip-rake. 展开更多
关键词 PROPELLER Tip rake Open water Scale effect RANSE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部