Complex engineered systems are often difficult to analyze and design due to the tangled interdependencies among their subsystems and components. Conventional design methods often need exact modeling or accurate struct...Complex engineered systems are often difficult to analyze and design due to the tangled interdependencies among their subsystems and components. Conventional design methods often need exact modeling or accurate structure decomposition, which limits their practical application. The rapid expansion of data makes utilizing data to guide and improve system design indispensable in practical engineering. In this paper, a data driven uncertainty evaluation approach is proposed to support the design of complex engineered systems. The core of the approach is a data-mining based uncertainty evaluation method that predicts the uncertainty level of a specific system design by means of analyzing association relations along different system attributes and synthesizing the information entropy of the covered attribute areas, and a quantitative measure of system uncertainty can be obtained accordingly. Monte Carlo simulation is introduced to get the uncertainty extrema, and the possible data distributions under different situations is discussed in detail The uncertainty values can be normalized using the simulation results and the values can be used to evaluate different system designs. A prototype system is established, and two case studies have been carded out. The case of an inverted pendulum system validates the effectiveness of the proposed method, and the case of an oil sump design shows the practicability when two or more design plans need to be compared. This research can be used to evaluate the uncertainty of complex engineered systems completely relying on data, and is ideally suited for plan selection and performance analysis in system design.展开更多
The Knowledge Map (KM) concept, which was derived to describe and manage knowledge. KM provides insight into the from the Fuzzy Cognitive Map (FCM), is used interdependencies and uncertainties contained in the sys...The Knowledge Map (KM) concept, which was derived to describe and manage knowledge. KM provides insight into the from the Fuzzy Cognitive Map (FCM), is used interdependencies and uncertainties contained in the system. This paper uses a model-free method to mine KMs in historical data to analyze component stock corporations of the Shanghai Stock 50 index. The analyses use static and time-domain analyses. The results indicate that a knowledge map is useful for representing knowledge and for monitoring the health of companies. Furthermore, sudden changes of the key features of the KMs should be taken seriously by policymakers as an alarm of a crisis.展开更多
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2015AA042101)
文摘Complex engineered systems are often difficult to analyze and design due to the tangled interdependencies among their subsystems and components. Conventional design methods often need exact modeling or accurate structure decomposition, which limits their practical application. The rapid expansion of data makes utilizing data to guide and improve system design indispensable in practical engineering. In this paper, a data driven uncertainty evaluation approach is proposed to support the design of complex engineered systems. The core of the approach is a data-mining based uncertainty evaluation method that predicts the uncertainty level of a specific system design by means of analyzing association relations along different system attributes and synthesizing the information entropy of the covered attribute areas, and a quantitative measure of system uncertainty can be obtained accordingly. Monte Carlo simulation is introduced to get the uncertainty extrema, and the possible data distributions under different situations is discussed in detail The uncertainty values can be normalized using the simulation results and the values can be used to evaluate different system designs. A prototype system is established, and two case studies have been carded out. The case of an inverted pendulum system validates the effectiveness of the proposed method, and the case of an oil sump design shows the practicability when two or more design plans need to be compared. This research can be used to evaluate the uncertainty of complex engineered systems completely relying on data, and is ideally suited for plan selection and performance analysis in system design.
基金supported in part by the National Natural Science Foundation of China(No.60874066)the National High-Tech Research and Development (863) Program of China(No.2009AA110302)
文摘The Knowledge Map (KM) concept, which was derived to describe and manage knowledge. KM provides insight into the from the Fuzzy Cognitive Map (FCM), is used interdependencies and uncertainties contained in the system. This paper uses a model-free method to mine KMs in historical data to analyze component stock corporations of the Shanghai Stock 50 index. The analyses use static and time-domain analyses. The results indicate that a knowledge map is useful for representing knowledge and for monitoring the health of companies. Furthermore, sudden changes of the key features of the KMs should be taken seriously by policymakers as an alarm of a crisis.