Before rise-to-power tests, the actual measured value of heat released from the Reactor Pressure Vessel(RPV) or removed by the Vessel Cooling System(VCS) cannot be obtained. It is difficult for operators to evaluate t...Before rise-to-power tests, the actual measured value of heat released from the Reactor Pressure Vessel(RPV) or removed by the Vessel Cooling System(VCS) cannot be obtained. It is difficult for operators to evaluate the reactor outlet coolant temperature supplied from the High Temperature Engineering Test Reactor(HTTR) before rise-to-power tests. Therefore, when the actual measured value of heat released from the RPV or removed by the VCS are changed during rise-to-power tests, operators need to evaluate quickly, within a few minutes, the heat removed by the VCS and the reactor outlet coolant temperature of 30 MW, at 100% reactor power, before the temperature achieves 967℃ which is the maximum temperature limit generating the reactor scram. In this paper, a rapid evaluation method for use by operators is presented. The difference between the experimental and analytical results was within 30(k W) and it is appropriate that the presented evaluation method can be applied; therefore, operators can analyze the heat removed by the VCS quickly, within a few minutes, before and during Rise-to-Power Tests.展开更多
文摘Before rise-to-power tests, the actual measured value of heat released from the Reactor Pressure Vessel(RPV) or removed by the Vessel Cooling System(VCS) cannot be obtained. It is difficult for operators to evaluate the reactor outlet coolant temperature supplied from the High Temperature Engineering Test Reactor(HTTR) before rise-to-power tests. Therefore, when the actual measured value of heat released from the RPV or removed by the VCS are changed during rise-to-power tests, operators need to evaluate quickly, within a few minutes, the heat removed by the VCS and the reactor outlet coolant temperature of 30 MW, at 100% reactor power, before the temperature achieves 967℃ which is the maximum temperature limit generating the reactor scram. In this paper, a rapid evaluation method for use by operators is presented. The difference between the experimental and analytical results was within 30(k W) and it is appropriate that the presented evaluation method can be applied; therefore, operators can analyze the heat removed by the VCS quickly, within a few minutes, before and during Rise-to-Power Tests.