期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The metabolomics variations among rice, brown rice, wet germinated brown rice, and processed wet germinated brown rice
1
作者 REN Chuan-ying LU Shu-wen +6 位作者 GUAN Lijun HONG Bin ZHANG Ying-lei HUANG Wen-gong LIBo LIU Wei LU Wei-hong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第9期2767-2776,共10页
Germination and processing are always accompanied by significant changes in the metabolic compositions of rice. In this study, polished rice(rice), brown rice, wet germinated brown rice(WGBR), high temperature and pre... Germination and processing are always accompanied by significant changes in the metabolic compositions of rice. In this study, polished rice(rice), brown rice, wet germinated brown rice(WGBR), high temperature and pressure-treated WGBR(WGBR-HTP), and low temperature-treated WGBR(WGBR-T18) were enrolled. An untargeted metabolomics assay isolated 6 122 positive ions and 4 224 negative ions(multiple difference ≥1.2 or ≤0.8333, P<0.05, and VIP≥1) by liquid chromatography-mass spectrum. These identified ions were mainly classified into three categories, including the compounds with biological roles, lipids, and phytochemical compounds. In addition to WGBR-T18 vs. WGBR, massive differential positive and negative ions were revealed between rice of different forms. Flavonoids, fatty acids, carboxylic acids, and organoxygen compounds were the dominant differential metabolites. Based on the Kyoto Encyclopedia of Genes and Genomes(KEGG) database, there 7 metabolic pathways(phenylalanine/tyrosine/tryptophan biosynthesis, histidine metabolism, betalain biosynthesis, C5-branched dibasic acid metabolism, purine metabolism, zeatin biosynthesis, and carbon metabolism) were determined between brown rice and rice. Germination changed the metabolic pathways of porphyrin and chlorophyll, pyrimidine, and purine metabolisms in brown rice. In addition, phosphonate and phosphinate metabolism, and arachidonic acid metabolism were differential metabolic pathways between WGBR-HTP and WGBR-T18. To sum up, there were obvious variations in metabolic compositions of rice, brown rice, WGBR, and WGBR-HTP. The changes of specific metabolites, such as flavonoids contributed to the antioxidant, anti-inflammatory, anti-cancer, and immunomodulatory effects of GBR. HTP may further improve the nutrition and storage of GBR through influencing specific metabolites, such as flavonoids and fatty acids. 展开更多
关键词 brown rice GERMINATION metabolomics metabolic pathway high temperature and pressure
下载PDF
Germinated brown rice relieves hyperlipidemia by alleviating gut microbiota dysbiosis
2
作者 REN Chuan-ying ZHANG Shan +9 位作者 HONG Bin GUAN Li-jun HUANG Wen-gong FENG Jun-ran SHA Di-xin YUAN Di LI Bo JI Ni-na LIU Wei LU Shu-wen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第3期945-957,共13页
Hyperlipidemia is a frequent metabolic disorder that is closely associated with diet. It is believed that brown rice, containing the outer bran layer and germ, is beneficial for the remission of hyperlipidemia. This s... Hyperlipidemia is a frequent metabolic disorder that is closely associated with diet. It is believed that brown rice, containing the outer bran layer and germ, is beneficial for the remission of hyperlipidemia. This study established a rat model of hyperlipidemia by feeding a high-fat diet. The hypolipidemic potential of germinated brown rice(Gbrown) and germinated black rice(a germinated black-pigmented brown rice, Gblack) were explored in the model rats, mainly in the aspects of blood lipids, lipases, apolipoproteins, and inflammation. The gut microbiota in hyperlipidemic rats receiving diverse dietary interventions was determined by 16S rDNA sequencing. The results showed that the intervention of Gbrown/Gblack alleviated the hyperlipidemia in rats, evidenced by decreased TC, TG, LDL-C, and apolipoprotein B, and increased HDL-C, HL, LPL, LCAT, and apolipoprotein A1. Gbrown/Gblack also weakened the inflammation in hyperlipidemia rats, evidenced by decreased TNF-α, IL-6, and ET-1. In addition, 16S rDNA sequencing revealed that the diet of Gbrown/Gblack elevated the abundance and diversity of gut microbiota in hyperlipidemia rats. At the phylum level, Gbrown/Gblack decreased Firmicutes, increased Bacteroidetes, and decreased the F/B ratio in hyperlipidemia rats. At the genus level, Gbrown/Gblack decreased Streptococcus and increased Ruminococcus and Allobaculum in hyperlipidemia rats. Some differential microbial genera relating to lipid metabolism were also determined, such as the Lachnospira and Ruminococcus in the Gblack group, and the Phascolarctobacterium, Dorea, Turicibacter, and Escherichia-Shigella in the Gbrown group. Notably, the beneficial effect of Gblack was stronger than Gbrown. To sum up, the dietary interventions of Gbrown/Gblack contributed to the remission of hyperlipidemia by alleviating the dysbiosis of gut microbiota. 展开更多
关键词 HYPERLIPIDEMIA GERMINATION brown rice black rice gut microbiota
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部