It is demonstrated that two kinds of soft X-ray spectroscopy are useful as nondestructive methods to in- vestigate multilayer structures modified by interdiffusion or by chemical reaction of adjoining layers in depth ...It is demonstrated that two kinds of soft X-ray spectroscopy are useful as nondestructive methods to in- vestigate multilayer structures modified by interdiffusion or by chemical reaction of adjoining layers in depth direc- tion. One is the total electron yield (TEY) spectroscopy involving angular dependence measurement. Using this method, it was found that in LiF/Si/LiF trilayers, the Si layers exhibited a characteristic similar to porous Si, and in CaF2/Si/CaF2 trilayers, it was found that CaF2 segregated through the Si layer. Moreover, it has been shown that the thickness of the top layer of a Mo/Si X-ray multilayer can be determined by analyzing TEY signals generated by the standing wave. The other is the soft X-ray emission spectroscopy involving spectral shape analysis. Using this method, it was found that in Mo/Si X-ray multilayers, the interdiffusion or chemical reaction giving rise to deterioration of re- flectance character occurs in as-deposited samples as well as in heated samples. In antiferromagnetic Fe/Si multilay- ers, it was confirmed that there was no existence of pure Si layers, but insulating FeSi2 layers were present. This result suggests that the source of antiferromagnetic coupling is not conduction electrons but quantum wave interference.展开更多
The basic concept of synchrotron radiation beamlines for vacuum ultraviolet and X-ray experiments has been introduced to beginning users and designers of beamlines. The beamline defined here is composed of a front end...The basic concept of synchrotron radiation beamlines for vacuum ultraviolet and X-ray experiments has been introduced to beginning users and designers of beamlines. The beamline defined here is composed of a front end, pre-mirrors, and a monochromator with refocusing mirrors, which are connected by beam pipes, providing monochromatic light for the experiments. Firstly, time characteristics of the synchrotron radiation are briefly reviewed. Secondly, the basic technology is introduced as the fundamental knowledge required to both users and designers. The topics are photoabsorption by air and solids, front ends and beam pipes, mirrors, monochromators, and filters. Thirdly, the design consideration is described mainly for the designers. The topics are design principle, principle of ray tracing, optical machinery and control, and vacuum. Fourthly, polarization control is considered. The topics are polarizers, polarization diagnosis of beamline, and circularly-polarized light generation. Finally, a brief summary is given introducing some references for further knowledge of the users and the designers.展开更多
文摘It is demonstrated that two kinds of soft X-ray spectroscopy are useful as nondestructive methods to in- vestigate multilayer structures modified by interdiffusion or by chemical reaction of adjoining layers in depth direc- tion. One is the total electron yield (TEY) spectroscopy involving angular dependence measurement. Using this method, it was found that in LiF/Si/LiF trilayers, the Si layers exhibited a characteristic similar to porous Si, and in CaF2/Si/CaF2 trilayers, it was found that CaF2 segregated through the Si layer. Moreover, it has been shown that the thickness of the top layer of a Mo/Si X-ray multilayer can be determined by analyzing TEY signals generated by the standing wave. The other is the soft X-ray emission spectroscopy involving spectral shape analysis. Using this method, it was found that in Mo/Si X-ray multilayers, the interdiffusion or chemical reaction giving rise to deterioration of re- flectance character occurs in as-deposited samples as well as in heated samples. In antiferromagnetic Fe/Si multilay- ers, it was confirmed that there was no existence of pure Si layers, but insulating FeSi2 layers were present. This result suggests that the source of antiferromagnetic coupling is not conduction electrons but quantum wave interference.
文摘The basic concept of synchrotron radiation beamlines for vacuum ultraviolet and X-ray experiments has been introduced to beginning users and designers of beamlines. The beamline defined here is composed of a front end, pre-mirrors, and a monochromator with refocusing mirrors, which are connected by beam pipes, providing monochromatic light for the experiments. Firstly, time characteristics of the synchrotron radiation are briefly reviewed. Secondly, the basic technology is introduced as the fundamental knowledge required to both users and designers. The topics are photoabsorption by air and solids, front ends and beam pipes, mirrors, monochromators, and filters. Thirdly, the design consideration is described mainly for the designers. The topics are design principle, principle of ray tracing, optical machinery and control, and vacuum. Fourthly, polarization control is considered. The topics are polarizers, polarization diagnosis of beamline, and circularly-polarized light generation. Finally, a brief summary is given introducing some references for further knowledge of the users and the designers.