We hypothesize that the quantum realm and the cosmos are linked by a scaling relation where the gravitational coupling constant <i>α<sub>G</sub></i> is the scale factor and decreases with cosm...We hypothesize that the quantum realm and the cosmos are linked by a scaling relation where the gravitational coupling constant <i>α<sub>G</sub></i> is the scale factor and decreases with cosmic time. We propose a simple cosmological model where cosmic inflation, dark energy and dark matter could be redundant concepts. We show that cosmological parameters such as the Hubble constant, the age, density and mass of the observable Universe could be derived simply from quantum parameters. Finally, we propose a fundamental MOND formula with no interpolating function and an acceleration parameter simply derived from the Hubble constant.展开更多
We test and explore a Modified Universe Dynamics (MOUND) formula recently proposed by the author. We show that, similarly to Milgrom’s Modified Newtonian Dynamics (MOND), it is successful in accounting for the mass d...We test and explore a Modified Universe Dynamics (MOUND) formula recently proposed by the author. We show that, similarly to Milgrom’s Modified Newtonian Dynamics (MOND), it is successful in accounting for the mass discrepancy in spiral galaxies, and it predicts the Baryonic Tully-Fisher Relation (BTFR) and the Radial Acceleration Relation (RAR). Contrary to Milgrom’s MOND, MOUND also explains the dynamics of galaxy clusters and does not rely on an empirical interpolating function or an ad hoc acceleration parameter.展开更多
文摘We hypothesize that the quantum realm and the cosmos are linked by a scaling relation where the gravitational coupling constant <i>α<sub>G</sub></i> is the scale factor and decreases with cosmic time. We propose a simple cosmological model where cosmic inflation, dark energy and dark matter could be redundant concepts. We show that cosmological parameters such as the Hubble constant, the age, density and mass of the observable Universe could be derived simply from quantum parameters. Finally, we propose a fundamental MOND formula with no interpolating function and an acceleration parameter simply derived from the Hubble constant.
文摘We test and explore a Modified Universe Dynamics (MOUND) formula recently proposed by the author. We show that, similarly to Milgrom’s Modified Newtonian Dynamics (MOND), it is successful in accounting for the mass discrepancy in spiral galaxies, and it predicts the Baryonic Tully-Fisher Relation (BTFR) and the Radial Acceleration Relation (RAR). Contrary to Milgrom’s MOND, MOUND also explains the dynamics of galaxy clusters and does not rely on an empirical interpolating function or an ad hoc acceleration parameter.