Soil carbon mapping is extremely useful in assessing the effect of land management practices on soil carbon storage. Applications of neutron-gamma analysis in scanning mode for mapping of soil carbon are discussed. A ...Soil carbon mapping is extremely useful in assessing the effect of land management practices on soil carbon storage. Applications of neutron-gamma analysis in scanning mode for mapping of soil carbon are discussed. A Global Positioning System(GPS) device and softwares required to simultaneously acquire gamma signals and geographical positions during scanning operations were added to an existing measurement system. The reliability of soil carbon measurements in scanning mode was demonstrated to be in agreement with results acquired from static mode. The error analysis indicated that scanning measurements can be conducted with the same accuracy as static measurements in approximately one fourth the time. To obtain results suitable for mapping analogous to traditional chemical analyses(i.e.,± 0.5 in weight percent or ± 0.5 w%), scanning time over a given site should be ca. 15 min using the current measurement system configuration. Based on this measurement time, a reasonable towing speed of 3–5 km h^-1, the necessity for complete site coverage during scanning, the number of sites(within the surveyed field), and the required total measurement time can be estimated. Soil carbon measurements for 28 field sites(total area ca. 2.5 ha) were conducted in ca. 8 h. Based on acquired data,a soil carbon distribution map was constructed utilizing various softwares. The surveyed field area included an asphalt road that had carbon readings higher than the surrounding land. The clarity with which these carbon-rich zones were delineated on the constructed map represents evidence supporting the veracity of this method. Neutron-gamma analysis technology can greatly facilitate timely construction of soil carbon maps.展开更多
Deduplication has been commonly used in both enterprise storage systems and cloud storage. To overcome the performance challenge for the selective restore operations of deduplication systems, solid-state-drive-based ...Deduplication has been commonly used in both enterprise storage systems and cloud storage. To overcome the performance challenge for the selective restore operations of deduplication systems, solid-state-drive-based (i.e., SSD-based) re^d cache cm, be deployed for speeding up by caching popular restore contents dynamically. Unfortunately, frequent data updates induced by classical cache schemes (e.g., LRU and LFU) significantly shorten SSDs' lifetime while slowing down I/O processes in SSDs. To address this problem, we propose a new solution -- LOP-Cache to greatly improve tile write durability of SSDs as well as I/O performance by enlarging the proportion of long-term popular (LOP) data among data written into SSD-based cache. LOP-Cache keeps LOP data in the SSD cache for a long time period to decrease the number of cache replacements. Furthermore, it prevents unpopular or unnecessary data in deduplication containers from being written into the SSD cache. We implemented LOP-Cache in a prototype deduplication system to evaluate its pertbrmance. Our experimental results indicate that LOP-Cache shortens the latency of selective restore by an average of 37.3% at the cost of a small SSD-based cache with only 5.56% capacity of the deduplicated data. Importantly, LOP-Cache improves SSDs' lifetime by a factor of 9.77. The evidence shows that LOP-Cache offers a cost-efficient SSD-based read cache solution to boost performance of selective restore for deduplication systems.展开更多
The future storage systems are expected to contain a wide variety of storage media and layers due to the rapid development of NVM(non-volatile memory)techniques.For NVM-based read caches,many kinds of NVM devices cann...The future storage systems are expected to contain a wide variety of storage media and layers due to the rapid development of NVM(non-volatile memory)techniques.For NVM-based read caches,many kinds of NVM devices cannot stand frequent data updates due to limited write endurance or high energy consumption of writing.However,traditional cache algorithms have to update cached blocks frequently because it is difficult for them to predict long-term popularity according to such limited information about data blocks,such as only a single value or a queue that reflects frequency or recency.In this paper,we propose a new MacroTrend(macroscopic trend)prediction method to discover long-term hot blocks through blocks'macro trends illustrated by their access count histograms.And then a new cache replacement algorithm is designed based on the MacroTrend prediction to greatly reduce the write amount while improving the hit ratio.We conduct extensive experiments driven by a series of real-world traces and find that compared with LRU,MacroTrend can reduce the write amounts of NVM cache devices significantly with similar hit ratios,leading to longer NVM lifetime or less energy consumption.展开更多
基金supported by the National Institute of Food and Agriculture (NIFA) Research Grant (No. ALA2016-67021-24417) “Precision geospatial mapping of soil carbon content for agricultural productivity and lifecycle management”
文摘Soil carbon mapping is extremely useful in assessing the effect of land management practices on soil carbon storage. Applications of neutron-gamma analysis in scanning mode for mapping of soil carbon are discussed. A Global Positioning System(GPS) device and softwares required to simultaneously acquire gamma signals and geographical positions during scanning operations were added to an existing measurement system. The reliability of soil carbon measurements in scanning mode was demonstrated to be in agreement with results acquired from static mode. The error analysis indicated that scanning measurements can be conducted with the same accuracy as static measurements in approximately one fourth the time. To obtain results suitable for mapping analogous to traditional chemical analyses(i.e.,± 0.5 in weight percent or ± 0.5 w%), scanning time over a given site should be ca. 15 min using the current measurement system configuration. Based on this measurement time, a reasonable towing speed of 3–5 km h^-1, the necessity for complete site coverage during scanning, the number of sites(within the surveyed field), and the required total measurement time can be estimated. Soil carbon measurements for 28 field sites(total area ca. 2.5 ha) were conducted in ca. 8 h. Based on acquired data,a soil carbon distribution map was constructed utilizing various softwares. The surveyed field area included an asphalt road that had carbon readings higher than the surrounding land. The clarity with which these carbon-rich zones were delineated on the constructed map represents evidence supporting the veracity of this method. Neutron-gamma analysis technology can greatly facilitate timely construction of soil carbon maps.
基金This work is supported by the Natural Science Foundation of Beijing under Grant No. 4172031, the Pundamental Research FSmds for the Central Universities of China, and the Research Funds of Renmin University of China under Grant No. 16XNLQ02. Xiao Qin's work is supported by the U.S. National Science Foundation under Grant Nos. IIS-1618669, CCF-0845257 (CAREER), CNS-0917137, CNS-0757778, CCF-0742187, CNS-0831502, CNS-0855251, and OCI-0753305. Xiao Qin's study is also supported by the Programme of Introducing Talents of Discipline to Universities (111 Project) in China under Grant No. B07038.
文摘Deduplication has been commonly used in both enterprise storage systems and cloud storage. To overcome the performance challenge for the selective restore operations of deduplication systems, solid-state-drive-based (i.e., SSD-based) re^d cache cm, be deployed for speeding up by caching popular restore contents dynamically. Unfortunately, frequent data updates induced by classical cache schemes (e.g., LRU and LFU) significantly shorten SSDs' lifetime while slowing down I/O processes in SSDs. To address this problem, we propose a new solution -- LOP-Cache to greatly improve tile write durability of SSDs as well as I/O performance by enlarging the proportion of long-term popular (LOP) data among data written into SSD-based cache. LOP-Cache keeps LOP data in the SSD cache for a long time period to decrease the number of cache replacements. Furthermore, it prevents unpopular or unnecessary data in deduplication containers from being written into the SSD cache. We implemented LOP-Cache in a prototype deduplication system to evaluate its pertbrmance. Our experimental results indicate that LOP-Cache shortens the latency of selective restore by an average of 37.3% at the cost of a small SSD-based cache with only 5.56% capacity of the deduplicated data. Importantly, LOP-Cache improves SSDs' lifetime by a factor of 9.77. The evidence shows that LOP-Cache offers a cost-efficient SSD-based read cache solution to boost performance of selective restore for deduplication systems.
基金supported by the National Key Research and Development Program of China under Grant No.2019YFE0198600the National Natural Science Foundation of China under Grant Nos.61972402,61972275,and 61732014.
文摘The future storage systems are expected to contain a wide variety of storage media and layers due to the rapid development of NVM(non-volatile memory)techniques.For NVM-based read caches,many kinds of NVM devices cannot stand frequent data updates due to limited write endurance or high energy consumption of writing.However,traditional cache algorithms have to update cached blocks frequently because it is difficult for them to predict long-term popularity according to such limited information about data blocks,such as only a single value or a queue that reflects frequency or recency.In this paper,we propose a new MacroTrend(macroscopic trend)prediction method to discover long-term hot blocks through blocks'macro trends illustrated by their access count histograms.And then a new cache replacement algorithm is designed based on the MacroTrend prediction to greatly reduce the write amount while improving the hit ratio.We conduct extensive experiments driven by a series of real-world traces and find that compared with LRU,MacroTrend can reduce the write amounts of NVM cache devices significantly with similar hit ratios,leading to longer NVM lifetime or less energy consumption.