Based on statistical amount of traffic and weather data sets from three weigh-in-motion sites for the study period of from 2005 to 2009, permanent traffic counters and weather stations in Alberta, Canada, an investiga...Based on statistical amount of traffic and weather data sets from three weigh-in-motion sites for the study period of from 2005 to 2009, permanent traffic counters and weather stations in Alberta, Canada, an investigation is carried out to study impacts of winter weather on volume of passenger car and truck traffic. Multiple regression models are developed to relate truck and passenger car traffic variations to winter weather conditions. Statistical validity of study results are confirmed by using statistical tests of significance. Considerable reductions in passenger car and truck volumes can be expected with decrease in cold temperatures. Such reductions are higher for passenger cars as compared to trucks. Due to cold and snow interactions, the reduction in car and truck traffic volume due to cold temperature could intensify with a rise in the amount of snowfall. For passenger cars, weekends experience higher traffic reductions as compared to weekdays. However, the impact of weather on truck traffic is generally similar for weekdays and weekends. Interestingly, an increase in truck traffic during severe weather conditions is noticed at one of the study sites. Such phenomenon is found statistically significant. None of the past studies in the literature have presented the possibility of traffic volume increases on highways during adverse weather conditions;which could happen due to shift of traffic from parallel roads with inadequate winter maintenance programs. It is believed that the findings of this study can benefit highway agencies in developing such programs and policies as efficient monitoring of passenger car and truck traffic, and plan for efficient winter roadway maintenance programs.展开更多
The main intent of this study is to investigate the accuracy of short-duration traffic counts conducted during winter months. The investigation is based on 11-year sample data collected using permanent traffic counter...The main intent of this study is to investigate the accuracy of short-duration traffic counts conducted during winter months. The investigation is based on 11-year sample data collected using permanent traffic counters at various locations in Alberta, Canada. Four types of road sites: commuter, regional commuter, rural long-distance, and recreational sites are studied. The sample data consti- tute six different durations of counts (12-, 24-, 48-, 72-, 96-h, and 1 week) taken during summer and winter months. The coefficient of variation (CV) is used as the relative measure of deviation for counts of different dura- tions to measure the accuracy of short-period traffic counts. The study results indicate that 48-h count seems to be the most cost-effective counting interval during both summer and winter months. It is also found that the lowest values of CV result for counts taken at commuter sites, and the highest values are observed for recreational sites. Frequent changes in temperature and other weather events cause significant variation in traffic volume, which results in an increase in CV values for counts taken during winter months. The application of an adjustment factor to remove the effect of cold and snow from short-period counts is also included in this study. Introduced adjustment factors can reduce the values of CV for all counts taken during winter months. The findings of this study can lead highway agencies to improve the cost-effectiveness of their short- period traffic counting programs.展开更多
文摘Based on statistical amount of traffic and weather data sets from three weigh-in-motion sites for the study period of from 2005 to 2009, permanent traffic counters and weather stations in Alberta, Canada, an investigation is carried out to study impacts of winter weather on volume of passenger car and truck traffic. Multiple regression models are developed to relate truck and passenger car traffic variations to winter weather conditions. Statistical validity of study results are confirmed by using statistical tests of significance. Considerable reductions in passenger car and truck volumes can be expected with decrease in cold temperatures. Such reductions are higher for passenger cars as compared to trucks. Due to cold and snow interactions, the reduction in car and truck traffic volume due to cold temperature could intensify with a rise in the amount of snowfall. For passenger cars, weekends experience higher traffic reductions as compared to weekdays. However, the impact of weather on truck traffic is generally similar for weekdays and weekends. Interestingly, an increase in truck traffic during severe weather conditions is noticed at one of the study sites. Such phenomenon is found statistically significant. None of the past studies in the literature have presented the possibility of traffic volume increases on highways during adverse weather conditions;which could happen due to shift of traffic from parallel roads with inadequate winter maintenance programs. It is believed that the findings of this study can benefit highway agencies in developing such programs and policies as efficient monitoring of passenger car and truck traffic, and plan for efficient winter roadway maintenance programs.
文摘The main intent of this study is to investigate the accuracy of short-duration traffic counts conducted during winter months. The investigation is based on 11-year sample data collected using permanent traffic counters at various locations in Alberta, Canada. Four types of road sites: commuter, regional commuter, rural long-distance, and recreational sites are studied. The sample data consti- tute six different durations of counts (12-, 24-, 48-, 72-, 96-h, and 1 week) taken during summer and winter months. The coefficient of variation (CV) is used as the relative measure of deviation for counts of different dura- tions to measure the accuracy of short-period traffic counts. The study results indicate that 48-h count seems to be the most cost-effective counting interval during both summer and winter months. It is also found that the lowest values of CV result for counts taken at commuter sites, and the highest values are observed for recreational sites. Frequent changes in temperature and other weather events cause significant variation in traffic volume, which results in an increase in CV values for counts taken during winter months. The application of an adjustment factor to remove the effect of cold and snow from short-period counts is also included in this study. Introduced adjustment factors can reduce the values of CV for all counts taken during winter months. The findings of this study can lead highway agencies to improve the cost-effectiveness of their short- period traffic counting programs.