FY-3C Microwave Temperature SounderⅡ(MWTS-Ⅱ)lacks observations at 23.8 GHz,31 GHz and 89 GHz,making it difficult to remove the data contaminated by precipitation in assimilation.In this paper,a fast forward operator...FY-3C Microwave Temperature SounderⅡ(MWTS-Ⅱ)lacks observations at 23.8 GHz,31 GHz and 89 GHz,making it difficult to remove the data contaminated by precipitation in assimilation.In this paper,a fast forward operator based on the Community Radiative Transfer Model(CRTM)was used to analyze the relationship between the observation minus background simulation(O-B)and the cloud fractions in different MWTS-Ⅱchannels.In addition,based on the community Gridpoint Statistical Interpolation(GSI)system,the radiation brightness temperature of the MWTS-Ⅱwas assimilated in the regional Numerical Weather Prediction(NWP)model.In the process of assimilation,Visible and Infrared Radiometer(VIRR)cloud detection products were matched to MWTS-Ⅱpixels for precipitation detection.For typhoon No.18 in 2014,impact tests of MWTS-Ⅱdata assimilation was carried out.The results show that,though the bias observation minus analysis(O-A)of assimilated data can be reduced by quality control only with|O-B|<3 K;however,the O-A becomes much smaller while the precipitation detection is performed with Fvirr<0.9(VIRR cloud fraction threshold of 0.9).Besides,the change of the environmental field around the typhoon is more conducive to make the simulated track closer to the observation.The 72-hour typhoon track simulation error also shows that,after the precipitation detection,the error of simulated typhoon track is significantly reduced,which reflects the validity of a precipitation detection method based on a double criterion of|O-B|<3 K and Fvirr<0.9.展开更多
基金Natural Science Foundation of China(41505082)Special Scientific Research Fund of Meteorology in the Public Welfare Profession of China(GYHY201506002,GYHY201506022)
文摘FY-3C Microwave Temperature SounderⅡ(MWTS-Ⅱ)lacks observations at 23.8 GHz,31 GHz and 89 GHz,making it difficult to remove the data contaminated by precipitation in assimilation.In this paper,a fast forward operator based on the Community Radiative Transfer Model(CRTM)was used to analyze the relationship between the observation minus background simulation(O-B)and the cloud fractions in different MWTS-Ⅱchannels.In addition,based on the community Gridpoint Statistical Interpolation(GSI)system,the radiation brightness temperature of the MWTS-Ⅱwas assimilated in the regional Numerical Weather Prediction(NWP)model.In the process of assimilation,Visible and Infrared Radiometer(VIRR)cloud detection products were matched to MWTS-Ⅱpixels for precipitation detection.For typhoon No.18 in 2014,impact tests of MWTS-Ⅱdata assimilation was carried out.The results show that,though the bias observation minus analysis(O-A)of assimilated data can be reduced by quality control only with|O-B|<3 K;however,the O-A becomes much smaller while the precipitation detection is performed with Fvirr<0.9(VIRR cloud fraction threshold of 0.9).Besides,the change of the environmental field around the typhoon is more conducive to make the simulated track closer to the observation.The 72-hour typhoon track simulation error also shows that,after the precipitation detection,the error of simulated typhoon track is significantly reduced,which reflects the validity of a precipitation detection method based on a double criterion of|O-B|<3 K and Fvirr<0.9.