Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrare...Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China.展开更多
Atmospheric ammonia(NH_(3)) is a chemically active trace gas that plays an important role in the atmospheric environment and climate change. Satellite remote sensing is a powerful technique to monitor NH_(3) concentra...Atmospheric ammonia(NH_(3)) is a chemically active trace gas that plays an important role in the atmospheric environment and climate change. Satellite remote sensing is a powerful technique to monitor NH_(3) concentration based on the absorption lines of NH_(3) in the thermal infrared region. In this study, we establish a retrieval algorithm to derive the NH_(3)column from the Hyperspectral Infrared Atmospheric Sounder(HIRAS) onboard the Chinese Feng Yun(FY)-3D satellite and present the first atmospheric NH_(3) column global map observed by the HIRAS instrument. The HIRAS observations can well capture NH_(3) hotspots around the world, e.g., India, West Africa, and East China, where large NH_(3) emissions exist. The HIRAS NH_(3) columns are also compared to the space-based Infrared Atmospheric Sounding Interferometer(IASI)measurements, and we find that the two instruments observe a consistent NH_(3) global distribution, with correlation coefficient(R) values of 0.28–0.73. Finally, some remaining issues about the HIRAS NH_(3) retrieval are discussed.展开更多
Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently opera...Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently operational in orbit.The data obtained from Fengyun satellites is employed in a multitude of applications,including weather forecasting,meteorological disaster prevention and reduction,climate change,global environmental monitoring,and space weather.These data products and services are made available to the global community,resulting in tangible social and economic benefits.In 2023,two Fengyun meteorological satellites were successfully launched.This report presents an overview of the two recently launched Fengyun satellites and currently in orbit Fengyun satellites,including an evaluation of their remote sensing instruments since 2022.Additionally,it addresses the subject of Fengyun satellite data archiving,data services,application services,international cooperation,and supporting activities.Furthermore,the development prospects have been outlined.展开更多
Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in p...Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.展开更多
After nearly 50 years of development, Fengyun(FY) satellite ushered in its best moment. China has become one of the three countries or units in the world(China, USA, and EU) that maintain both polar orbit and geostati...After nearly 50 years of development, Fengyun(FY) satellite ushered in its best moment. China has become one of the three countries or units in the world(China, USA, and EU) that maintain both polar orbit and geostationary orbit satellites operationally. Up to now, there are 17 Fengyun(FY) satellites that have been launched successfully since 1988. There are two FY polar orbital satellites and four FY geostationary orbit satellites operate in the space to provide a huge amount of the earth observation data to the user communities. The FY satellite data has been applied not only in the meteorological but also in agriculture,hydraulic engineering, environmental, education, scientific research and other fields. More recently, three meteorological satellites have been launched within the past two years. They are FY-4 A on 11 December2016, FY-3 D on 15 November 2017 and FY-2 H on 5 June 2018. This paper introduces the current status of FY meteorological satellites and data service. The updates of the latest three satellites have been addressed.The characteristics of their payloads on-boarding have been specified in details and the benefit fields have been anticipated separately.展开更多
Accurate brightness temperature(BT)is a top priority for retrievals of atmospheric and surface parameters.Microwave Radiation Imagers(MWRIs)on Chinese Fengyun-3(FY-3)serial polar-orbiting satellites have been providin...Accurate brightness temperature(BT)is a top priority for retrievals of atmospheric and surface parameters.Microwave Radiation Imagers(MWRIs)on Chinese Fengyun-3(FY-3)serial polar-orbiting satellites have been providing abundant BT data since 2008.Much work has been done to evaluate short-term MWRI observations,but the long-term performance of MWRIs remains unclear.In this study,operational MWRI BTs from 2012–19 were carefully examined by using simultaneous Advanced Microwave Scanning Radiometer 2(AMSR2)BTs as the reference.The BT difference between MWRI/FY3B and AMSR2 during 2012–19 increased gradually over time.As compared with MWRI/FY3B BTs over land,those of MWRI/FY3D were much closer to those of AMSR2.The ascending and descending orbit difference for MWRI/FY3D is also much smaller than that for MWRI/FY3B.These results suggested the improvement of MWRI/FY3D over MWRI/FY3B.A substantial BT difference between AMSR2 and MWRI was found over water,especially at the vertical polarization channels.A similar BT difference was found over polar water based on the simultaneous conical overpassing(SCO)method.Radiative transfer model simulations suggested that the substantial BT differences at the vertical polarization channels of MWRI and AMSR2 over water were partly contributed by their difference in the incident angle;however,the underestimation of the operational MWRI BT over water remained a very important issue.Preliminary assessment of the operational and recalibrated MWRI BT demonstrated that MWRI BTs were substantially improved after the recalibration,including the obvious underestimation of the operational MWRI BT at the vertical polarization channels over water was corrected,and the time-dependent biases were reduced.展开更多
Introduction After 40 years of development, China's satellite meteorological service has made remarkable achievements. Fengyun satellites have realized the transformation from trial operation to full operational serv...Introduction After 40 years of development, China's satellite meteorological service has made remarkable achievements. Fengyun satellites have realized the transformation from trial operation to full operational service and achieved a coordinated space-based earth obervation system with polar and geostationary meteorological satellites.展开更多
We use the High-energy Electron Experiments(HEP)instrument onboard Arase(ERG)to conduct an energy-dependent cross-satellite calibration of electron fluxes measured by the High Energy Particle Detector(HEPD)onboard Fen...We use the High-energy Electron Experiments(HEP)instrument onboard Arase(ERG)to conduct an energy-dependent cross-satellite calibration of electron fluxes measured by the High Energy Particle Detector(HEPD)onboard FengYun-4A(FY-4A)spanning from April 1,2017,to September 30,2019.By tracing the two-dimensional magnetic positions(L,magnetic local time[MLT])of FY-4A at each time,we compare the datasets of the conjugate electron fluxes over the range of 245–894 keV in 6 energy channels for the satellite pair within different sets of L×MLT.The variations in the electron fluxes observed by FY-4A generally agree with the Arase measurements,and the percentages of the ratios of electron flux conjunctions within a factor of 2 are larger than 50%.Compared with Arase,FY-4A systematically overestimates electron fluxes at all 6 energy channels,with the corresponding calibration factors ranging from 0.67 to 0.81.After the cross-satellite calibration,the electron flux conjunctions between FY-4A and Arase show better agreement,with much smaller normalized root mean square errors.Our results provide a valuable reference for the application of FY-4A high-energy electron datasets to in-depth investigations of the Earth’s radiation belt electron dynamics.展开更多
Anthropogenic Nitrogen oxides(NO_(x)=NO_(2)+NO)emissions are highly concentrated in urban area,and the weekly cycles,seasonal patterns and long-term trends of tropospheric NO_(2)columns over cities differ from region ...Anthropogenic Nitrogen oxides(NO_(x)=NO_(2)+NO)emissions are highly concentrated in urban area,and the weekly cycles,seasonal patterns and long-term trends of tropospheric NO_(2)columns over cities differ from region to region due to different emission sectoral compositions and human activities.In this study,we used satellite observed tropospheric NO_(2)column data to compare the longand short-term NO_(2)column density time series over cities in the United Sates(the U.S.),western Europe and China.The results showed that in all the targeted cities,the outbreak of the Corona Virus Disease in 2019(COVID-19)moved the December peak of the city-level NO_(2)columns forward to November and October or even earlier in 2020 and 2021.On weekly level,cities in the U.S.show the lowest NO_(2)columns ratio on weekend/work day,then come the western European cities,and a weak weekly pattern is seen in Chinese cities.For all the cites,we find a higher weekend/work day NO_(2)ratio in cold seasons than in warm seasons,indicating a higher contribution from NOx emission sectors of residential,industry and power plants in the warm seasons.In the long-term,NO_(2)columns over the U.S.and western European cities declined by a fraction twice that of the regional mean level from 2004 to 2021.In China,NO_(2)columns started to decrease since 2012,at a similar rate between the city and regional level.This work confirms the importance to quantify and control NOx emissions from cities.展开更多
In this study, a new rain type classification algorithm for the Dual-Frequency Precipitation Radar(DPR) suitable over the Tibetan Plateau(TP) was proposed by analyzing Global Precipitation Measurement(GPM) DPR Level-2...In this study, a new rain type classification algorithm for the Dual-Frequency Precipitation Radar(DPR) suitable over the Tibetan Plateau(TP) was proposed by analyzing Global Precipitation Measurement(GPM) DPR Level-2 data in summer from 2014 to 2020. It was found that the DPR rain type classification algorithm(simply called DPR algorithm) has mis-identification problems in two aspects in summer TP. In the new algorithm of rain type classification in summer TP,four rain types are classified by using new thresholds, such as the maximum reflectivity factor, the difference between the maximum reflectivity factor and the background maximum reflectivity factor, and the echo top height. In the threshold of the maximum reflectivity factors, 30 d BZ and 18 d BZ are both thresholds to separate strong convective precipitation, weak convective precipitation and weak precipitation. The results illustrate obvious differences of radar reflectivity factor and vertical velocity among the three rain types in summer TP, such as the reflectivity factor of most strong convective precipitation distributes from 15 d BZ to near 35 d BZ from 4 km to 13 km, and increases almost linearly with the decrease in height. For most weak convective precipitation, the reflectivity factor distributes from 15 d BZ to 28 d BZ with the height from 4 km to 9 km. For weak precipitation, the reflectivity factor mainly distributes in range of 15–25 d BZ with height within 4–10 km. It is also shows that weak precipitation is the dominant rain type in summer TP, accounting for 40%–80%,followed by weak convective precipitation(25%–40%), and strong convective precipitation has the least proportion(less than 30%).展开更多
Understanding the structure of tropical cyclone(TC)hydrometeors is crucial for detecting the changes in the distribution and intensity of precipitation.In this study,the GMI brightness temperature and cloud-dependent ...Understanding the structure of tropical cyclone(TC)hydrometeors is crucial for detecting the changes in the distribution and intensity of precipitation.In this study,the GMI brightness temperature and cloud-dependent 1DVAR algorithm were used to retrieve the hydrometeor profiles and surface rain rate of TC Nanmadol(2022).The Advanced Radiative Transfer Modeling System(ARMS)was used to calculate the Jacobian and degrees of freedom(△DOF)of cloud water,rainwater,and graupel for different channels of GMI in convective conditions.The retrieval results were compared with the Dual-frequency Precipitation Radar(DPR),GMI 2A,and IMERG products.It is shown that from all channels of GMI,rain water has the highest△DOF,at 1.72.According to the radiance Jacobian to atmospheric state variables,cloud water emission dominates its scattering.For rain water,the emission of channels 1–4 dominates scattering.Compared with the GMI 2A precipitation product,the 1DVAR precipitation rate has a higher correlation coefficient(0.713)with the IMERG product and can better reflect the location of TC precipitation.Near the TC eyewall,the highest radar echo top indicates strong convection.Near the melting layer where Ka-band attenuation is strong,the double frequency difference of DPR data reflects the location of the melting.The DPR drop size distribution(DSD)product shows that there is a significant increase in particle size below the melting layer in the spiral rain band.Thus,the particle size may be one of the main reasons for the smaller rain water below the melting layer retrieved from 1DVAR.展开更多
Seasonal snow cover is a key global climate and hydrological system component drawing considerable attention due to glob-al warming conditions.However,the spatiotemporal snow cover patterns are challenging in western ...Seasonal snow cover is a key global climate and hydrological system component drawing considerable attention due to glob-al warming conditions.However,the spatiotemporal snow cover patterns are challenging in western Jilin,China due to natural condi-tions and sparse observation.Hence,this study investigated the spatiotemporal patterns of snow cover using fine-resolution passive mi-crowave(PMW)snow depth(SD)data from 1987 to 2018,and revealed the potential influence of climate factors on SD variations.The results indicated that the interannual range of SD was between 2.90 cm and 9.60 cm during the snowy winter seasons and the annual mean SD showed a slightly increasing trend(P>0.05)at a rate of 0.009 cm/yr.In snowmelt periods,the snow cover contributed to an increase in volumetric soil water,and the change in SD was significantly affected by air temperature.The correlation between SD and air temperature was negative,while the correlation between SD and precipitation was positive during December and March.In March,the correlation coefficient exceeded 0.5 in Zhenlai,Da’an,Qianan,and Qianguo counties.However,the SD and precipitation were neg-atively correlated over western Jilin in October,and several subregions presented a negative correlation between SD and precipitation in November and April.展开更多
Sea surface temperature(SST)is a crucial physical parameter in meteorology and oceanography.This study demonstrates that the influence of earth incidence angle(EIA)on the SST retrieved from the microwave radiation ima...Sea surface temperature(SST)is a crucial physical parameter in meteorology and oceanography.This study demonstrates that the influence of earth incidence angle(EIA)on the SST retrieved from the microwave radiation imager(MWRI)onboard FengYun-3(FY-3)meteorological satellites should not be ignored.Compared with algorithms that do not consider the influence of EIA in the regression,those that integrate the EIA into the regression can enhance the accuracy of SST retrievals.Subsequently,based on the recalibrated Level 1B data from the FY-3/MWRI,a long-term SST dataset was reprocessed by employing the algorithm that integrates the EIA into the regression.The reprocessed SST data,including FY-3B/MWRI SST during 2010-2019,FY-3C/MWRI SST during 2013-2019,and FY-3D/MWRI SST during 2018-2020,were compared with the in-situ SST and the SST dataset from the Operational Sea Surface Temperature and Ice Analysis(OSTIA).The results show that the FY-3/MWRI SST data were consistent with both the in-situ SST and the OSTIA SST dataset.Compared with the Copernicus Climate Change Service V2.0 SST,the absolute deviation of the reprocessed SST,with a quality flag of 50,was less than 1.5℃.The root mean square errors of the FY-3/MWRI orbital,daily,and monthly SSTs,with a quality flag of 50,were approximately 0.82℃,0.69℃,and 0.37℃,respectively.The primary discrepancies between the FY-3/MWRI SST and the OSTIA SST were found mainly in the regions of the western boundary current and the Antarctic Circumpolar Current.Overall,this reprocessed SST product is recommended for El Niño and La Niña events monitoring.展开更多
High spatiotemporal resolution radiances from the advanced imagers onboard the new generation of geostationary weather satellites provide a unique opportunity to evaluate the abilities of various reanalysis datasets t...High spatiotemporal resolution radiances from the advanced imagers onboard the new generation of geostationary weather satellites provide a unique opportunity to evaluate the abilities of various reanalysis datasets to depict multilayer tropospheric water vapor(WV),thereby enhancing our understanding of the deficiencies of WV in reanalysis datasets.Based on daily measurements from the Advanced Himawari Imager(AHI)onboard the Himawari-8 satellite in 2016,the bias features of multilayer WV from six reanalysis datasets over East Asia are thoroughly evaluated.The assessments show that wet biases exist in the upper troposphere in all six reanalysis datasets;in particular,these biases are much larger in summer.Overall,we find better depictions of WV in the middle troposphere than in the upper troposphere.The accuracy of WV in the ERA5 dataset is the highest,in terms of the bias magnitude,dispersion,and pattern similarity.The characteristics of the WV bias over the Tibetan Plateau are significantly different from those over other parts of East Asia.In addition,the reanalysis datasets all capture the shift of the subtropical high very well,with ERA5 performing better overall.展开更多
The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral b...The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral bands,enabling the detection of highly variable aerosol optical depth(AOD).Quantitative retrieval of AOD has hitherto been challenging,especially over land.In this study,an AOD retrieval algorithm is proposed that combines deep learning and transfer learning.The algorithm uses core concepts from both the Dark Target(DT)and Deep Blue(DB)algorithms to select features for the machinelearning(ML)algorithm,allowing for AOD retrieval at 550 nm over both dark and bright surfaces.The algorithm consists of two steps:①A baseline deep neural network(DNN)with skip connections is developed using 10 min Advanced Himawari Imager(AHI)AODs as the target variable,and②sunphotometer AODs from 89 ground-based stations are used to fine-tune the DNN parameters.Out-of-station validation shows that the retrieved AOD attains high accuracy,characterized by a coefficient of determination(R2)of 0.70,a mean bias error(MBE)of 0.03,and a percentage of data within the expected error(EE)of 70.7%.A sensitivity study reveals that the top-of-atmosphere reflectance at 650 and 470 nm,as well as the surface reflectance at 650 nm,are the two largest sources of uncertainty impacting the retrieval.In a case study of monitoring an extreme aerosol event,the AGRI AOD is found to be able to capture the detailed temporal evolution of the event.This work demonstrates the superiority of the transfer-learning technique in satellite AOD retrievals and the applicability of the retrieved AGRI AOD in monitoring extreme pollution events.展开更多
The polar magnetic fields of the Sun play an important role in governing solar activity and powering fast solar wind.However,because our view of the Sun is limited in the ecliptic plane,the polar regions remain largel...The polar magnetic fields of the Sun play an important role in governing solar activity and powering fast solar wind.However,because our view of the Sun is limited in the ecliptic plane,the polar regions remain largely uncharted.Using the high spatial resolution and polarimetric precision vector magnetograms observed by Hinode from 2012 to 2021,we investigate the long-term variation of the magnetic fields in polar caps at different latitudes.The Hinode magnetic measurements show that the polarity reversal processes in the north and south polar caps are non-simultaneous.The variation of the averaged radial magnetic flux density reveals that,in each polar cap,the polarity reversal is completed successively from the 70°latitude to the pole,reflecting a poleward magnetic flux migration therein.These results clarify the polar magnetic polarity reversal process at different latitudes.展开更多
The onset,evolution,and propagation processes of convective cells can be reflected by the organizational morphology of mesoscale convective systems(MCSs),which are key factors in determining the potential for heavy pr...The onset,evolution,and propagation processes of convective cells can be reflected by the organizational morphology of mesoscale convective systems(MCSs),which are key factors in determining the potential for heavy precipitation.This paper proposed a method for objectively classifying and segmenting MCSs using geosynchronous satellite observations.Validation of the product relative to the classification in radar composite reflectivity imagery indicates that the algorithm offers skill for discriminating between convective and stratiform areas and matched 65%of convective area identifications in radar imagery with a false alarm rate of 39%and an accuracy of 94%.A quantitative evaluation of the similarity between the structures of 50 MCSs randomly obtained from satellite and radar observations shows that the similarity was as high as 60%.For further testing,the organizational modes of the MCS that caused the heavy precipitation in Northwest China on August 21,2016(hereinafter known as the“0821”rainstorm)were identified.It was found that the MCS,accompanied by the“0821”rainstorm,successively exhibited modes of the isolated cell,squall line with parallel stratiform(PS)rain,and non-linear system during its life cycle.Among them,the PS mode might have played a key role in causing this flooding.These findings are in line with previous studies.展开更多
Based on the lightning observation data from the Fengyun-4A(FY-4A)Lightning Mapping Imager(FY-4A/LMI)and the Lightning Imaging Sensor(LIS)on the International Space Station(ISS),we extract the“event”type data as the...Based on the lightning observation data from the Fengyun-4A(FY-4A)Lightning Mapping Imager(FY-4A/LMI)and the Lightning Imaging Sensor(LIS)on the International Space Station(ISS),we extract the“event”type data as the lightning detection results.These observations are then compared with the cloud-to-ground(CG)lightning observation data from the China Meteorological Administration.This study focuses on the characteristics of lightning activity in Southeast China,primarily in Jiangxi Province and its adjacent areas,from April to September,2017–2022.In addition,with the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis data,we further delved into the potential factors influencing the distribution and variations in lightning activity and their primary related factors.Our findings indicate that the lightning frequency and density of the FY-4A/LMI,ISS-LIS and CG data are higher in southern and central Jiangxi,central Fujian Province,and western and central Guangdong Province,while they tend to be lower in eastern Hunan Province.In general,the high-value areas of lightning density for the FY-4A/LMI are located in inland mountainous areas.The lower the latitude is,the higher the CG lightning density is.High-value areas of the CG lightning density are more likely to be located in eastern Fujian and southeastern Zhejiang Province.However,the high-value areas of lightning density for the ISS-LIS are more dispersed,with a scattered distribution in inland mountainous areas and along the coast of eastern Fujian.Thus,the mountainous terrain is closely related to the high-value areas of the lightning density.The locations of the high-value areas of the lightning density for the FY-4A/LMI correspond well with those for the CG observations,and the seasonal variations are also consistent.In contrast,the distribution of the high-value areas of the lightning density for the ISS-LIS is more dispersed.The positions of the peak frequency of the FY-4A/LMI lightning and CG lightning contrast with local altitudes,primarily located at lower altitudes or near mountainsides.K-index and convective available potential energy(CAPE)can better reflect the local boundary layer conditions,where the lightning density is higher and lightning seasonal variations are apparent.There are strong correlations in the annual variations between the dew-point temperature(Td)and CG lightning frequency,and the monthly variations of the dew-point temperature and CAPE are also strongly correlated with monthly variations of CG lightning,while they are weakly correlated with the lightning frequency for the FY-4A/LMI and ISS-LIS.This result reflects that the CAPE shows a remarkable effect on the CG lightning frequency during seasonal transitions.展开更多
In this paper,the latest progress,major achievements and future plans of Chinese meteorological satellites and the core data processing techniques are discussed.First,the latest three FengYun(FY)meteorological satelli...In this paper,the latest progress,major achievements and future plans of Chinese meteorological satellites and the core data processing techniques are discussed.First,the latest three FengYun(FY)meteorological satellites(FY-2H,FY-3D,and FY-4A)and their primary objectives are introduced Second,the core image navigation techniques and accuracies of the FY meteorological satellites are elaborated,including the latest geostationary(FY-2/4)and polar-orbit(FY-3)satellites.Third,the radiometric calibration techniques and accuracies of reflective solar bands,thermal infrared bands,and passive microwave bands for FY meteorological satellites are discussed.It also illustrates the latest progress of real-time calibration with the onboard calibration system and validation with different methods,including the vicarious China radiance calibration site calibration,pseudo invariant calibration site calibration,deep convective clouds calibration,and lunar calibration.Fourth,recent progress of meteorological satellite data assimilation applications and quantitative science produce are summarized at length.The main progress is in meteorological satellite data assimilation by using microwave and hyper-spectral infrared sensors in global and regional numerical weather prediction models.Lastly,the latest progress in radiative transfer,absorption and scattering calculations for satellite remote sensing is summarized,and some important research using a new radiative transfer model are illustrated.展开更多
文摘Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China.
基金supported by the Feng Yun Application Pioneering Project (FY-APP-2022.0502)the National Natural Science Foundation of China (Grant No. 42205140)。
文摘Atmospheric ammonia(NH_(3)) is a chemically active trace gas that plays an important role in the atmospheric environment and climate change. Satellite remote sensing is a powerful technique to monitor NH_(3) concentration based on the absorption lines of NH_(3) in the thermal infrared region. In this study, we establish a retrieval algorithm to derive the NH_(3)column from the Hyperspectral Infrared Atmospheric Sounder(HIRAS) onboard the Chinese Feng Yun(FY)-3D satellite and present the first atmospheric NH_(3) column global map observed by the HIRAS instrument. The HIRAS observations can well capture NH_(3) hotspots around the world, e.g., India, West Africa, and East China, where large NH_(3) emissions exist. The HIRAS NH_(3) columns are also compared to the space-based Infrared Atmospheric Sounding Interferometer(IASI)measurements, and we find that the two instruments observe a consistent NH_(3) global distribution, with correlation coefficient(R) values of 0.28–0.73. Finally, some remaining issues about the HIRAS NH_(3) retrieval are discussed.
基金Supported by National Natural Science Foundation of China(42274217)。
文摘Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently operational in orbit.The data obtained from Fengyun satellites is employed in a multitude of applications,including weather forecasting,meteorological disaster prevention and reduction,climate change,global environmental monitoring,and space weather.These data products and services are made available to the global community,resulting in tangible social and economic benefits.In 2023,two Fengyun meteorological satellites were successfully launched.This report presents an overview of the two recently launched Fengyun satellites and currently in orbit Fengyun satellites,including an evaluation of their remote sensing instruments since 2022.Additionally,it addresses the subject of Fengyun satellite data archiving,data services,application services,international cooperation,and supporting activities.Furthermore,the development prospects have been outlined.
基金funded by the National Natural Science Foundation of China (Grant Nos. 42305150 and 42325501)the China Postdoctoral Science Foundation (Grant No. 2023M741774)。
文摘Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.
基金Supported by the National Key Research&Development Program of China(2018YFB0504900,2018YFB0504901,2018YFB0504905)
文摘After nearly 50 years of development, Fengyun(FY) satellite ushered in its best moment. China has become one of the three countries or units in the world(China, USA, and EU) that maintain both polar orbit and geostationary orbit satellites operationally. Up to now, there are 17 Fengyun(FY) satellites that have been launched successfully since 1988. There are two FY polar orbital satellites and four FY geostationary orbit satellites operate in the space to provide a huge amount of the earth observation data to the user communities. The FY satellite data has been applied not only in the meteorological but also in agriculture,hydraulic engineering, environmental, education, scientific research and other fields. More recently, three meteorological satellites have been launched within the past two years. They are FY-4 A on 11 December2016, FY-3 D on 15 November 2017 and FY-2 H on 5 June 2018. This paper introduces the current status of FY meteorological satellites and data service. The updates of the latest three satellites have been addressed.The characteristics of their payloads on-boarding have been specified in details and the benefit fields have been anticipated separately.
基金supported by the National Key R&D Program of China(Grant No.2022YFF0801301)the National Natural Science Foundation of China(Grant No.41575033)。
文摘Accurate brightness temperature(BT)is a top priority for retrievals of atmospheric and surface parameters.Microwave Radiation Imagers(MWRIs)on Chinese Fengyun-3(FY-3)serial polar-orbiting satellites have been providing abundant BT data since 2008.Much work has been done to evaluate short-term MWRI observations,but the long-term performance of MWRIs remains unclear.In this study,operational MWRI BTs from 2012–19 were carefully examined by using simultaneous Advanced Microwave Scanning Radiometer 2(AMSR2)BTs as the reference.The BT difference between MWRI/FY3B and AMSR2 during 2012–19 increased gradually over time.As compared with MWRI/FY3B BTs over land,those of MWRI/FY3D were much closer to those of AMSR2.The ascending and descending orbit difference for MWRI/FY3D is also much smaller than that for MWRI/FY3B.These results suggested the improvement of MWRI/FY3D over MWRI/FY3B.A substantial BT difference between AMSR2 and MWRI was found over water,especially at the vertical polarization channels.A similar BT difference was found over polar water based on the simultaneous conical overpassing(SCO)method.Radiative transfer model simulations suggested that the substantial BT differences at the vertical polarization channels of MWRI and AMSR2 over water were partly contributed by their difference in the incident angle;however,the underestimation of the operational MWRI BT over water remained a very important issue.Preliminary assessment of the operational and recalibrated MWRI BT demonstrated that MWRI BTs were substantially improved after the recalibration,including the obvious underestimation of the operational MWRI BT at the vertical polarization channels over water was corrected,and the time-dependent biases were reduced.
文摘Introduction After 40 years of development, China's satellite meteorological service has made remarkable achievements. Fengyun satellites have realized the transformation from trial operation to full operational service and achieved a coordinated space-based earth obervation system with polar and geostationary meteorological satellites.
基金supported by the National Natural Science Foundation of China(Grant Nos.42025404,42188101,42241143,41931073,and 42204160)the National Key R&D Program of China(Grant Nos.2022YFF0503700,2022YFF0503900,and 2021YFA0718600)+1 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the Fundamental Research Funds for the Central Universities(Grant Nos.2042022kf1012 and 2042022kf1016).
文摘We use the High-energy Electron Experiments(HEP)instrument onboard Arase(ERG)to conduct an energy-dependent cross-satellite calibration of electron fluxes measured by the High Energy Particle Detector(HEPD)onboard FengYun-4A(FY-4A)spanning from April 1,2017,to September 30,2019.By tracing the two-dimensional magnetic positions(L,magnetic local time[MLT])of FY-4A at each time,we compare the datasets of the conjugate electron fluxes over the range of 245–894 keV in 6 energy channels for the satellite pair within different sets of L×MLT.The variations in the electron fluxes observed by FY-4A generally agree with the Arase measurements,and the percentages of the ratios of electron flux conjunctions within a factor of 2 are larger than 50%.Compared with Arase,FY-4A systematically overestimates electron fluxes at all 6 energy channels,with the corresponding calibration factors ranging from 0.67 to 0.81.After the cross-satellite calibration,the electron flux conjunctions between FY-4A and Arase show better agreement,with much smaller normalized root mean square errors.Our results provide a valuable reference for the application of FY-4A high-energy electron datasets to in-depth investigations of the Earth’s radiation belt electron dynamics.
基金Under the auspices of the National Natural Science Foundation of China(No.42375106,41805098)the National Key R&D Program of China(No.2023YFB3907500)。
文摘Anthropogenic Nitrogen oxides(NO_(x)=NO_(2)+NO)emissions are highly concentrated in urban area,and the weekly cycles,seasonal patterns and long-term trends of tropospheric NO_(2)columns over cities differ from region to region due to different emission sectoral compositions and human activities.In this study,we used satellite observed tropospheric NO_(2)column data to compare the longand short-term NO_(2)column density time series over cities in the United Sates(the U.S.),western Europe and China.The results showed that in all the targeted cities,the outbreak of the Corona Virus Disease in 2019(COVID-19)moved the December peak of the city-level NO_(2)columns forward to November and October or even earlier in 2020 and 2021.On weekly level,cities in the U.S.show the lowest NO_(2)columns ratio on weekend/work day,then come the western European cities,and a weak weekly pattern is seen in Chinese cities.For all the cites,we find a higher weekend/work day NO_(2)ratio in cold seasons than in warm seasons,indicating a higher contribution from NOx emission sectors of residential,industry and power plants in the warm seasons.In the long-term,NO_(2)columns over the U.S.and western European cities declined by a fraction twice that of the regional mean level from 2004 to 2021.In China,NO_(2)columns started to decrease since 2012,at a similar rate between the city and regional level.This work confirms the importance to quantify and control NOx emissions from cities.
基金funded by the National Natural Science Foundation of China project (Grant Nos.42275140, 42230612, 91837310, 92037000)the Second Tibetan Plateau Scientific Expedition and Research (STEP) program(Grant No. 2019QZKK0104)。
文摘In this study, a new rain type classification algorithm for the Dual-Frequency Precipitation Radar(DPR) suitable over the Tibetan Plateau(TP) was proposed by analyzing Global Precipitation Measurement(GPM) DPR Level-2 data in summer from 2014 to 2020. It was found that the DPR rain type classification algorithm(simply called DPR algorithm) has mis-identification problems in two aspects in summer TP. In the new algorithm of rain type classification in summer TP,four rain types are classified by using new thresholds, such as the maximum reflectivity factor, the difference between the maximum reflectivity factor and the background maximum reflectivity factor, and the echo top height. In the threshold of the maximum reflectivity factors, 30 d BZ and 18 d BZ are both thresholds to separate strong convective precipitation, weak convective precipitation and weak precipitation. The results illustrate obvious differences of radar reflectivity factor and vertical velocity among the three rain types in summer TP, such as the reflectivity factor of most strong convective precipitation distributes from 15 d BZ to near 35 d BZ from 4 km to 13 km, and increases almost linearly with the decrease in height. For most weak convective precipitation, the reflectivity factor distributes from 15 d BZ to 28 d BZ with the height from 4 km to 9 km. For weak precipitation, the reflectivity factor mainly distributes in range of 15–25 d BZ with height within 4–10 km. It is also shows that weak precipitation is the dominant rain type in summer TP, accounting for 40%–80%,followed by weak convective precipitation(25%–40%), and strong convective precipitation has the least proportion(less than 30%).
基金funded by the National Key Research and Development Program of China(Grant No.2022YFC3004202)the National Natural Science Foundation of China(Grant Nos.U2142212 and 42105136)。
文摘Understanding the structure of tropical cyclone(TC)hydrometeors is crucial for detecting the changes in the distribution and intensity of precipitation.In this study,the GMI brightness temperature and cloud-dependent 1DVAR algorithm were used to retrieve the hydrometeor profiles and surface rain rate of TC Nanmadol(2022).The Advanced Radiative Transfer Modeling System(ARMS)was used to calculate the Jacobian and degrees of freedom(△DOF)of cloud water,rainwater,and graupel for different channels of GMI in convective conditions.The retrieval results were compared with the Dual-frequency Precipitation Radar(DPR),GMI 2A,and IMERG products.It is shown that from all channels of GMI,rain water has the highest△DOF,at 1.72.According to the radiance Jacobian to atmospheric state variables,cloud water emission dominates its scattering.For rain water,the emission of channels 1–4 dominates scattering.Compared with the GMI 2A precipitation product,the 1DVAR precipitation rate has a higher correlation coefficient(0.713)with the IMERG product and can better reflect the location of TC precipitation.Near the TC eyewall,the highest radar echo top indicates strong convection.Near the melting layer where Ka-band attenuation is strong,the double frequency difference of DPR data reflects the location of the melting.The DPR drop size distribution(DSD)product shows that there is a significant increase in particle size below the melting layer in the spiral rain band.Thus,the particle size may be one of the main reasons for the smaller rain water below the melting layer retrieved from 1DVAR.
基金Under the auspices of the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA28110502)Science and Technology Development Plan Project of Jilin Province(No.20220202035NC)+1 种基金National Natural Science Foundation of China(No.41871248)Changchun Science and Technology Development Plan Project(No.21ZY12)。
文摘Seasonal snow cover is a key global climate and hydrological system component drawing considerable attention due to glob-al warming conditions.However,the spatiotemporal snow cover patterns are challenging in western Jilin,China due to natural condi-tions and sparse observation.Hence,this study investigated the spatiotemporal patterns of snow cover using fine-resolution passive mi-crowave(PMW)snow depth(SD)data from 1987 to 2018,and revealed the potential influence of climate factors on SD variations.The results indicated that the interannual range of SD was between 2.90 cm and 9.60 cm during the snowy winter seasons and the annual mean SD showed a slightly increasing trend(P>0.05)at a rate of 0.009 cm/yr.In snowmelt periods,the snow cover contributed to an increase in volumetric soil water,and the change in SD was significantly affected by air temperature.The correlation between SD and air temperature was negative,while the correlation between SD and precipitation was positive during December and March.In March,the correlation coefficient exceeded 0.5 in Zhenlai,Da’an,Qianan,and Qianguo counties.However,the SD and precipitation were neg-atively correlated over western Jilin in October,and several subregions presented a negative correlation between SD and precipitation in November and April.
基金National Natural Science Foundation of China(42330602)Youth Innovation Team for“FengYun Satellite Remote Sensing Product Verification”(CMA2023QN12)。
文摘Sea surface temperature(SST)is a crucial physical parameter in meteorology and oceanography.This study demonstrates that the influence of earth incidence angle(EIA)on the SST retrieved from the microwave radiation imager(MWRI)onboard FengYun-3(FY-3)meteorological satellites should not be ignored.Compared with algorithms that do not consider the influence of EIA in the regression,those that integrate the EIA into the regression can enhance the accuracy of SST retrievals.Subsequently,based on the recalibrated Level 1B data from the FY-3/MWRI,a long-term SST dataset was reprocessed by employing the algorithm that integrates the EIA into the regression.The reprocessed SST data,including FY-3B/MWRI SST during 2010-2019,FY-3C/MWRI SST during 2013-2019,and FY-3D/MWRI SST during 2018-2020,were compared with the in-situ SST and the SST dataset from the Operational Sea Surface Temperature and Ice Analysis(OSTIA).The results show that the FY-3/MWRI SST data were consistent with both the in-situ SST and the OSTIA SST dataset.Compared with the Copernicus Climate Change Service V2.0 SST,the absolute deviation of the reprocessed SST,with a quality flag of 50,was less than 1.5℃.The root mean square errors of the FY-3/MWRI orbital,daily,and monthly SSTs,with a quality flag of 50,were approximately 0.82℃,0.69℃,and 0.37℃,respectively.The primary discrepancies between the FY-3/MWRI SST and the OSTIA SST were found mainly in the regions of the western boundary current and the Antarctic Circumpolar Current.Overall,this reprocessed SST product is recommended for El Niño and La Niña events monitoring.
基金partly supported by the National Natural Science Foundation of China(Grant Nos.41975020 and 41975031)(Jun LI)。
文摘High spatiotemporal resolution radiances from the advanced imagers onboard the new generation of geostationary weather satellites provide a unique opportunity to evaluate the abilities of various reanalysis datasets to depict multilayer tropospheric water vapor(WV),thereby enhancing our understanding of the deficiencies of WV in reanalysis datasets.Based on daily measurements from the Advanced Himawari Imager(AHI)onboard the Himawari-8 satellite in 2016,the bias features of multilayer WV from six reanalysis datasets over East Asia are thoroughly evaluated.The assessments show that wet biases exist in the upper troposphere in all six reanalysis datasets;in particular,these biases are much larger in summer.Overall,we find better depictions of WV in the middle troposphere than in the upper troposphere.The accuracy of WV in the ERA5 dataset is the highest,in terms of the bias magnitude,dispersion,and pattern similarity.The characteristics of the WV bias over the Tibetan Plateau are significantly different from those over other parts of East Asia.In addition,the reanalysis datasets all capture the shift of the subtropical high very well,with ERA5 performing better overall.
基金supported by the National Natural Science of Foundation of China(41825011,42030608,42105128,and 42075079)the Opening Foundation of Key Laboratory of Atmospheric Sounding,the CMA and the CMA Research Center on Meteorological Observation Engineering Technology(U2021Z03).
文摘The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral bands,enabling the detection of highly variable aerosol optical depth(AOD).Quantitative retrieval of AOD has hitherto been challenging,especially over land.In this study,an AOD retrieval algorithm is proposed that combines deep learning and transfer learning.The algorithm uses core concepts from both the Dark Target(DT)and Deep Blue(DB)algorithms to select features for the machinelearning(ML)algorithm,allowing for AOD retrieval at 550 nm over both dark and bright surfaces.The algorithm consists of two steps:①A baseline deep neural network(DNN)with skip connections is developed using 10 min Advanced Himawari Imager(AHI)AODs as the target variable,and②sunphotometer AODs from 89 ground-based stations are used to fine-tune the DNN parameters.Out-of-station validation shows that the retrieved AOD attains high accuracy,characterized by a coefficient of determination(R2)of 0.70,a mean bias error(MBE)of 0.03,and a percentage of data within the expected error(EE)of 70.7%.A sensitivity study reveals that the top-of-atmosphere reflectance at 650 and 470 nm,as well as the surface reflectance at 650 nm,are the two largest sources of uncertainty impacting the retrieval.In a case study of monitoring an extreme aerosol event,the AGRI AOD is found to be able to capture the detailed temporal evolution of the event.This work demonstrates the superiority of the transfer-learning technique in satellite AOD retrievals and the applicability of the retrieved AGRI AOD in monitoring extreme pollution events.
基金supported by the National Key R&D Programs of China(2019YFA0405000,2022YFF0503800,2022YFF0503000)the Strategic Priority Research Programs of the Chinese Academy of Sciences(XDB0560000,XDB41000000)+1 种基金the National Natural Science Foundations of China(NSFC,Grant Nos.12173005,12273060,12350004,12273061,12222306,and 12073001)the Youth Innovation Promotion Association CAS,and Yunnan Academician Workstation of Wang Jingxiu(No.202005AF150025)。
文摘The polar magnetic fields of the Sun play an important role in governing solar activity and powering fast solar wind.However,because our view of the Sun is limited in the ecliptic plane,the polar regions remain largely uncharted.Using the high spatial resolution and polarimetric precision vector magnetograms observed by Hinode from 2012 to 2021,we investigate the long-term variation of the magnetic fields in polar caps at different latitudes.The Hinode magnetic measurements show that the polarity reversal processes in the north and south polar caps are non-simultaneous.The variation of the averaged radial magnetic flux density reveals that,in each polar cap,the polarity reversal is completed successively from the 70°latitude to the pole,reflecting a poleward magnetic flux migration therein.These results clarify the polar magnetic polarity reversal process at different latitudes.
基金National Natural Science Foundation of China(41965001)。
文摘The onset,evolution,and propagation processes of convective cells can be reflected by the organizational morphology of mesoscale convective systems(MCSs),which are key factors in determining the potential for heavy precipitation.This paper proposed a method for objectively classifying and segmenting MCSs using geosynchronous satellite observations.Validation of the product relative to the classification in radar composite reflectivity imagery indicates that the algorithm offers skill for discriminating between convective and stratiform areas and matched 65%of convective area identifications in radar imagery with a false alarm rate of 39%and an accuracy of 94%.A quantitative evaluation of the similarity between the structures of 50 MCSs randomly obtained from satellite and radar observations shows that the similarity was as high as 60%.For further testing,the organizational modes of the MCS that caused the heavy precipitation in Northwest China on August 21,2016(hereinafter known as the“0821”rainstorm)were identified.It was found that the MCS,accompanied by the“0821”rainstorm,successively exhibited modes of the isolated cell,squall line with parallel stratiform(PS)rain,and non-linear system during its life cycle.Among them,the PS mode might have played a key role in causing this flooding.These findings are in line with previous studies.
基金National Natural Science Foundation of China(42175014,42205137)Open Research Fund of Institute of Meteorological Technology Innovation,Nanjing(BJG202202)+3 种基金Joint Research Project of Typhoon Research,Shanghai Typhoon Institute,China Meteorological Administration(TFJJ202209)Innovation Development Project of China Meteorological Administration(CXFZ2023P001)Open Project of KLME&CIC-FEMD(KLME202311)Jiangxi MDIA-ASI Fund。
文摘Based on the lightning observation data from the Fengyun-4A(FY-4A)Lightning Mapping Imager(FY-4A/LMI)and the Lightning Imaging Sensor(LIS)on the International Space Station(ISS),we extract the“event”type data as the lightning detection results.These observations are then compared with the cloud-to-ground(CG)lightning observation data from the China Meteorological Administration.This study focuses on the characteristics of lightning activity in Southeast China,primarily in Jiangxi Province and its adjacent areas,from April to September,2017–2022.In addition,with the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis data,we further delved into the potential factors influencing the distribution and variations in lightning activity and their primary related factors.Our findings indicate that the lightning frequency and density of the FY-4A/LMI,ISS-LIS and CG data are higher in southern and central Jiangxi,central Fujian Province,and western and central Guangdong Province,while they tend to be lower in eastern Hunan Province.In general,the high-value areas of lightning density for the FY-4A/LMI are located in inland mountainous areas.The lower the latitude is,the higher the CG lightning density is.High-value areas of the CG lightning density are more likely to be located in eastern Fujian and southeastern Zhejiang Province.However,the high-value areas of lightning density for the ISS-LIS are more dispersed,with a scattered distribution in inland mountainous areas and along the coast of eastern Fujian.Thus,the mountainous terrain is closely related to the high-value areas of the lightning density.The locations of the high-value areas of the lightning density for the FY-4A/LMI correspond well with those for the CG observations,and the seasonal variations are also consistent.In contrast,the distribution of the high-value areas of the lightning density for the ISS-LIS is more dispersed.The positions of the peak frequency of the FY-4A/LMI lightning and CG lightning contrast with local altitudes,primarily located at lower altitudes or near mountainsides.K-index and convective available potential energy(CAPE)can better reflect the local boundary layer conditions,where the lightning density is higher and lightning seasonal variations are apparent.There are strong correlations in the annual variations between the dew-point temperature(Td)and CG lightning frequency,and the monthly variations of the dew-point temperature and CAPE are also strongly correlated with monthly variations of CG lightning,while they are weakly correlated with the lightning frequency for the FY-4A/LMI and ISS-LIS.This result reflects that the CAPE shows a remarkable effect on the CG lightning frequency during seasonal transitions.
基金funded by the National Key R&D Program of China(Grant Nos.2018YFB0504900 and 2015AA123700)
文摘In this paper,the latest progress,major achievements and future plans of Chinese meteorological satellites and the core data processing techniques are discussed.First,the latest three FengYun(FY)meteorological satellites(FY-2H,FY-3D,and FY-4A)and their primary objectives are introduced Second,the core image navigation techniques and accuracies of the FY meteorological satellites are elaborated,including the latest geostationary(FY-2/4)and polar-orbit(FY-3)satellites.Third,the radiometric calibration techniques and accuracies of reflective solar bands,thermal infrared bands,and passive microwave bands for FY meteorological satellites are discussed.It also illustrates the latest progress of real-time calibration with the onboard calibration system and validation with different methods,including the vicarious China radiance calibration site calibration,pseudo invariant calibration site calibration,deep convective clouds calibration,and lunar calibration.Fourth,recent progress of meteorological satellite data assimilation applications and quantitative science produce are summarized at length.The main progress is in meteorological satellite data assimilation by using microwave and hyper-spectral infrared sensors in global and regional numerical weather prediction models.Lastly,the latest progress in radiative transfer,absorption and scattering calculations for satellite remote sensing is summarized,and some important research using a new radiative transfer model are illustrated.