A solid acid catalyst of zirconium sulfate (ZS) on a pure hexagonal mesoporous silica (HMS) sieve was prepared and characterized by small angle X-ray diffraction, NH3-temperature programmed desorption, and thermogravi...A solid acid catalyst of zirconium sulfate (ZS) on a pure hexagonal mesoporous silica (HMS) sieve was prepared and characterized by small angle X-ray diffraction, NH3-temperature programmed desorption, and thermogravimetric analysis. The obtained ZS/HMS catalyst displayed a typical mesoporous structure, ZS was well dispersed on the HMS support, and the acidity increased with the amount of ZS loading. Gossypol was extracted from cottonseed cake with acetone as solvent, and then the gossypol solution was esterified with ZS/HMS as catalyst to yield products of acetic acid gossypol. Under the optimal conditions, the conversion efficiency of gossypol was as high as 96.7%.展开更多
Eu-doped ZnO nanoneedles with different doping concentrations were prepared via the facile hydrothermal method.The crystal structure,morphology and photoluminescence property of the ZnO nanoneedles were characterized ...Eu-doped ZnO nanoneedles with different doping concentrations were prepared via the facile hydrothermal method.The crystal structure,morphology and photoluminescence property of the ZnO nanoneedles were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),photoluminescence spectroscopy(PL) and Raman spectroscopy.The results show that the europium ions are incorporated into the crystal lattice of ZnO matrix in trivalent ions.The nanoneedles are 2-3 μm in length and 100 nm in the tip diameter.PL and Raman measurements indicate that higher Eu^3+ doping concentration may destroy the crystallization of the nanoneedles and decrease the ratio of IUV/IDLE,which is mainly due to the more defects in the doped ZnO nanoneedles.And the characteristic red emissions of Eu^3+ ions are found by the PL spectroscopy with the Eu^3+doping concentration increasing,which are attributed to the ^5D0→^7F0,^5D0→^7F1 and ^5D0→^7F2 transitions.展开更多
文摘A solid acid catalyst of zirconium sulfate (ZS) on a pure hexagonal mesoporous silica (HMS) sieve was prepared and characterized by small angle X-ray diffraction, NH3-temperature programmed desorption, and thermogravimetric analysis. The obtained ZS/HMS catalyst displayed a typical mesoporous structure, ZS was well dispersed on the HMS support, and the acidity increased with the amount of ZS loading. Gossypol was extracted from cottonseed cake with acetone as solvent, and then the gossypol solution was esterified with ZS/HMS as catalyst to yield products of acetic acid gossypol. Under the optimal conditions, the conversion efficiency of gossypol was as high as 96.7%.
基金Supported by the National Natural Science Foundation of China(Nos.61178074, 61008051), the Program for the Development of Science and Technology of Jilin Province, China(Nos.20100113, 20140101205 JC) and the Natural Science Foundation of Jiangsu Province, China(No.BK2011513).
文摘Eu-doped ZnO nanoneedles with different doping concentrations were prepared via the facile hydrothermal method.The crystal structure,morphology and photoluminescence property of the ZnO nanoneedles were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),photoluminescence spectroscopy(PL) and Raman spectroscopy.The results show that the europium ions are incorporated into the crystal lattice of ZnO matrix in trivalent ions.The nanoneedles are 2-3 μm in length and 100 nm in the tip diameter.PL and Raman measurements indicate that higher Eu^3+ doping concentration may destroy the crystallization of the nanoneedles and decrease the ratio of IUV/IDLE,which is mainly due to the more defects in the doped ZnO nanoneedles.And the characteristic red emissions of Eu^3+ ions are found by the PL spectroscopy with the Eu^3+doping concentration increasing,which are attributed to the ^5D0→^7F0,^5D0→^7F1 and ^5D0→^7F2 transitions.