期刊文献+
共找到2,748篇文章
< 1 2 138 >
每页显示 20 50 100
Phase field model for electric-thermal coupled discharge breakdown of polyimide nanocomposites under high frequency electrical stress
1
作者 韩智云 李庆民 +3 位作者 李俊科 王梦溪 任瀚文 邹亮 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期114-124,共11页
In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heighte... In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment. 展开更多
关键词 dielectric discharge breakdown high frequency power electronic transformer polyimide nanocomposites phase field model
下载PDF
Constructing a stable interface on Ni-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode via lactic acid-assisted engineering strategy
2
作者 Weijian Tang Chengzhi Hu +4 位作者 AFei Li Xiaoqin Huang Zhangxian Chen Jianhui Su Weixin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期412-422,I0010,共12页
Ni-rich layered oxides are potential cathode materials for next-generation high energy density Li-ion batteries due to their high capacity and low cost.However,the inherently unstable surface properties,including high... Ni-rich layered oxides are potential cathode materials for next-generation high energy density Li-ion batteries due to their high capacity and low cost.However,the inherently unstable surface properties,including high levels of residual Li compounds,dissolution of transition metal cations,and parasitic side reactions,have not been effectively addressed,leading to significant degradation in their electrochemical performance.In this study,we propose a simple and effective lactic acid-assisted interface engineering strategy to regulate the surface chemistry and properties of Ni-rich LiNi_(0.8)Co_(0.1)Mr_(0.1)O_(2) cathode.This novel surface treatment method successfully eliminates surface residual Li compounds,inhibits structural collapse,and mitigates cathode-electrolyte interface film growth.As a result,the lactic acidtreated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) achieved a remarkable capacity retention of 91.7% after 100 cycles at 0.5 C(25℃) and outstanding rate capability of 149.5 mA h g^(-1) at 10 C,significantly outperforming the pristine material.Furthermore,a pouch-type full cell incorporating the modified LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode demonstrates impressive long-term cycle life,retaining 81.5% of its capacity after 500 cycles at 1 C.More importantly,the thermal stability of the modified cathode is also dramatically improved.This study offers a valuable surface modification strategy for enhancing the overall performance of Ni-rich cathode materials. 展开更多
关键词 Residual Li Lactic acid Surface modification Carbon coating Layered cathode Ni-rich
下载PDF
An Improved Solov2 Based on Attention Mechanism and Weighted Loss Function for Electrical Equipment Instance Segmentation
3
作者 Junpeng Wu Zhenpeng Liu +2 位作者 Xingfan Jiang Xinguang Tao Ye Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期677-694,共18页
The current existing problem of deep learning framework for the detection and segmentation of electrical equipment is dominantly related to low precision.Because of the reliable,safe and easy-to-operate technology pro... The current existing problem of deep learning framework for the detection and segmentation of electrical equipment is dominantly related to low precision.Because of the reliable,safe and easy-to-operate technology provided by deep learning-based video surveillance for unmanned inspection of electrical equipment,this paper uses the bottleneck attention module(BAM)attention mechanism to improve the Solov2 model and proposes a new electrical equipment segmentation mode.Firstly,the BAM attention mechanism is integrated into the feature extraction network to adaptively learn the correlation between feature channels,thereby improving the expression ability of the feature map;secondly,the weighted sum of CrossEntropy Loss and Dice loss is designed as the mask loss to improve the segmentation accuracy and robustness of the model;finally,the non-maximal suppression(NMS)algorithm to better handle the overlap problem in instance segmentation.Experimental results show that the proposed method achieves an average segmentation accuracy of mAP of 80.4% on three types of electrical equipment datasets,including transformers,insulators and voltage transformers,which improve the detection accuracy by more than 5.7% compared with the original Solov2 model.The segmentation model proposed can provide a focusing technical means for the intelligent management of power systems. 展开更多
关键词 Deep learning electrical equipment attention mechanism weighted loss function
下载PDF
Theoretical analysis and engineering application of controllable shock wave technology for enhancing coalbed methane in soft and low‑permeability coal seams
4
作者 Guodong Qiao Zegong Liu +4 位作者 Yongmin Zhang Changping Yi Kui Gao Shigui Fu Youzhi Zhao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期123-142,共20页
Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas con... Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas content and low permeability have become increasingly prevalent.While controllable shockwave(CSW)technology has proven effective in enhancing CBM in laboratory settings,there is a lack of reports on its field applications in soft and low-permeability coal seams.This study establishes the governing equations for stress waves induced by CSW.Laplace numerical inversion was employed to analyse the dynamic response of the coal seam during CSW antireflection.Additionally,quantitative calculations were performed for the crushed zone,fracture zone,and effective CSW influence range,which guided the selection of field test parameters.The results of the field test unveiled a substantial improvement in the gas permeability coefficient,the average rate of pure methane flowrate,and the mean gas flowrate within a 10 m radius of the antireflection borehole.These enhancements were notable,showing increases of 3 times,13.72 times,and 11.48 times,respectively.Furthermore,the field test performed on the CSW antireflection gas extraction hole cluster demonstrated a noticeable improvement in CBM extraction.After antireflection,the maximum peak gas concentration and maximum peak pure methane flow reached 71.2%and 2.59 m^(3)/min,respectively.These findings will offer valuable guidance for the application of CSW antireflection technology in soft and low-permeability coal seams. 展开更多
关键词 CSW antireflection in coal seams CBM extraction enhancement Soft and low-permeability coal seams Field test
下载PDF
Electrical characteristics of new three-phase traction power supply system for rail transit 被引量:1
5
作者 Xiaohong Huang Hanlin Wang +4 位作者 Qunzhan Li Naiqi Yang Tao Ren You Peng Haoyang Li 《Railway Engineering Science》 2023年第1期75-88,共14页
A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit.... A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit.With the application of two-stage three-phase continuous power supply structure,the electrical characteristics exhibit new features differing from the existing traction system.In this work,the principle for voltage levels determining two-stage network is dissected in accordance with the requirements of traction network and electric locomotive.The equivalent model of three-phase traction system is built for deducing the formula of current distribution and voltage losses.Based on the chain network model of the traction network,a simulation model is established to analyze the electrical characteristics such as traction current distribution,voltage losses,system equivalent impedance,voltage distribution,voltage unbalance and regenerative energy utilization.In a few words,quite a lot traction current of about 99%is undertaken by long-section cable network.The proportion of system voltage losses is small attributed to the two-stage three-phase power supply structure,and the voltage unbal-ance caused by impedance asymmetry of traction network is less than 1‰.In addition,the utilization rate of regenerative energy for locomotive achieves a significant promotion of over 97%. 展开更多
关键词 Three-phase AC power supply Two-stage power supply structure Electrical characteristics Current distribution Voltage losses Regenerative energy
下载PDF
Cascaded ELM-Based Joint Frame Synchronization and Channel Estimation over Rician Fading Channel with Hardware Imperfections 被引量:1
6
作者 Qing Chaojin Rao Chuangui +2 位作者 Yang Na Tang Shuhai Wang Jiafan 《China Communications》 SCIE CSCD 2024年第6期87-102,共16页
Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com... Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations. 展开更多
关键词 channel estimation extreme learning machine frame synchronization hardware imperfection nonlinear distortion synchronization metric
下载PDF
Traction power systems for electrified railways:evolution,state of the art,and future trends 被引量:1
7
作者 Haitao Hu Yunjiang Liu +4 位作者 Yong Li Zhengyou He Shibin Gao Xiaojuan Zhu Haidong Tao 《Railway Engineering Science》 EI 2024年第1期1-19,共19页
Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified ... Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy. 展开更多
关键词 Railway traction power system Future electrified railway Flexible continuous power supply Renewable energy Integrated energy system
下载PDF
Reliability evaluation of IGBT power module on electric vehicle using big data 被引量:1
8
作者 Li Liu Lei Tang +5 位作者 Huaping Jiang Fanyi Wei Zonghua Li Changhong Du Qianlei Peng Guocheng Lu 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期50-60,共11页
There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction... There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction temperature estimation approach based on neural network without additional cost is proposed and the lifetime calculation for IGBT using electric vehicle big data is performed.The direct current(DC)voltage,operation current,switching frequency,negative thermal coefficient thermistor(NTC)temperature and IGBT lifetime are inputs.And the junction temperature(T_(j))is output.With the rain flow counting method,the classified irregular temperatures are brought into the life model for the failure cycles.The fatigue accumulation method is then used to calculate the IGBT lifetime.To solve the limited computational and storage resources of electric vehicle controllers,the operation of IGBT lifetime calculation is running on a big data platform.The lifetime is then transmitted wirelessly to electric vehicles as input for neural network.Thus the junction temperature of IGBT under long-term operating conditions can be accurately estimated.A test platform of the motor controller combined with the vehicle big data server is built for the IGBT accelerated aging test.Subsequently,the IGBT lifetime predictions are derived from the junction temperature estimation by the neural network method and the thermal network method.The experiment shows that the lifetime prediction based on a neural network with big data demonstrates a higher accuracy than that of the thermal network,which improves the reliability evaluation of system. 展开更多
关键词 IGBT junction temperature neural network electric vehicles big data
下载PDF
CAEFusion: A New Convolutional Autoencoder-Based Infrared and Visible Light Image Fusion Algorithm 被引量:1
9
作者 Chun-Ming Wu Mei-Ling Ren +1 位作者 Jin Lei Zi-Mu Jiang 《Computers, Materials & Continua》 SCIE EI 2024年第8期2857-2872,共16页
To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed... To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks. 展开更多
关键词 Image fusion deep learning auto-encoder(AE) INFRARED visible light
下载PDF
Infrared and Visible Image Fusion Based on Res2Net-Transformer Automatic Encoding and Decoding 被引量:1
10
作者 Chunming Wu Wukai Liu Xin Ma 《Computers, Materials & Continua》 SCIE EI 2024年第4期1441-1461,共21页
A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The ne... A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations. 展开更多
关键词 Image fusion Res2Net-Transformer infrared image visible image
下载PDF
Numerical Study on Reduction in Aerodynamic Drag and Noise of High-Speed Pantograph 被引量:1
11
作者 Deng Qin Xing Du +1 位作者 Tian Li Jiye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2155-2173,共19页
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t... Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise. 展开更多
关键词 High-speed pantograph aerodynamic drag aerodynamic noise REDUCTION optimizing
下载PDF
Exploring impedance spectrum for lithium-ion batteries diagnosis and prognosis:A comprehensive review 被引量:1
12
作者 Xinghao Du Jinhao Meng +2 位作者 Yassine Amirat Fei Gao Mohamed Benbouzid 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期464-483,I0010,共21页
Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indis... Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indispensable for guaranteeing the secure and optimal functionality of the batteries.The impedance spectrum has garnered growing interest due to its ability to provide a valuable understanding of material characteristics and electrochemical processes.To inspire further progress in the investigation and application of the battery impedance spectrum,this paper provides a comprehensive review of the determination and utilization of the impedance spectrum.The sources of impedance inaccuracies are systematically analyzed in terms of frequency response characteristics.The applicability of utilizing diverse impedance features for the diagnosis and prognosis of batteries is further elaborated.Finally,challenges and prospects for future research are discussed. 展开更多
关键词 Lithium-ion battery Impedance spectrum Temperature monitoring Failure diagnosis Health prognosis
下载PDF
Evolutionary Neural Architecture Search and Its Applications in Healthcare 被引量:1
13
作者 Xin Liu Jie Li +3 位作者 Jianwei Zhao Bin Cao Rongge Yan Zhihan Lyu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期143-185,共43页
Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human ... Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications. 展开更多
关键词 Neural architecture search evolutionary computation large-scale multiobjective optimization distributed parallelism healthcare
下载PDF
A Novel Multiple DBC-staked units Package to Parallel More Chips for SiC Power Module 被引量:1
14
作者 Xiaoshuang Hui Puqi Ning +4 位作者 Tao Fan Yuhui Kang Kai Wang Yunhui Mei Guangyin Lei 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期72-79,共8页
Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple stake... Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple staked direct bonded copper(DBC) unit based power module packaging method to parallel more chips. This method utilizes mutual inductance cancellation effect to reduce parasitic inductance. Because the conduction area in the new package is doubled, the overall area of power module can be reduced. Entire power module is divided into smaller units to enhance manufacture yield, and improve design freedom. This paper provides a detailed design, analysis and fabrication procedure for the proposed package structure. Additionally, this paper offers several feasible solutions for the connection between power terminals and DBC untis. With the structure, 18dies were paralleled for each phase-leg in a econodual size power module. Both simulation and double pulse test results demonstrate that, compared to conventional layouts, the proposed package method has 74.8% smaller parasitic inductance and 34.9% lower footprint. 展开更多
关键词 Silicon carbide Electric vehicle Power modules PACKAGE
下载PDF
Spatial analysis of the osteoarthritis microenvironment: techniques, insights, and applications 被引量:1
15
作者 Xiwei Fan Antonia Rujia Sun +5 位作者 Reuben S.E.Young Isaac O.Afara Brett R.Hamilton Louis Jun Ye Ong Ross Crawford Indira Prasadam 《Bone Research》 SCIE CAS CSCD 2024年第1期1-19,共19页
Osteoarthritis(OA)is a debilitating degenerative disease affecting multiple joint tissues,including cartilage,bone,synovium,and adipose tissues.OA presents diverse clinical phenotypes and distinct molecular endotypes,... Osteoarthritis(OA)is a debilitating degenerative disease affecting multiple joint tissues,including cartilage,bone,synovium,and adipose tissues.OA presents diverse clinical phenotypes and distinct molecular endotypes,including inflammatory,metabolic,mechanical,genetic,and synovial variants.Consequently,innovative technologies are needed to support the development of effective diagnostic and precision therapeutic approaches.Traditional analysis of bulk OA tissue extracts has limitations due to technical constraints,causing challenges in the differentiation between various physiological and pathological phenotypes in joint tissues.This issue has led to standardization difficulties and hindered the success of clinical trials.Gaining insights into the spatial variations of the cellular and molecular structures in OA tissues,encompassing DNA,RNA,metabolites,and proteins,as well as their chemical properties,elemental composition,and mechanical attributes,can contribute to a more comprehensive understanding of the disease subtypes.Spatially resolved biology enables biologists to investigate cells within the context of their tissue microenvironment,providing a more holistic view of cellular function.Recent advances in innovative spatial biology techniques now allow intact tissue sections to be examined using various-omics lenses,such as genomics,transcriptomics,proteomics,and metabolomics,with spatial data.This fusion of approaches provides researchers with critical insights into the molecular composition and functions of the cells and tissues at precise spatial coordinates.Furthermore,advanced imaging techniques,including high-resolution microscopy,hyperspectral imaging,and mass spectrometry imaging,enable the visualization and analysis of the spatial distribution of biomolecules,cells,and tissues.Linking these molecular imaging outputs to conventional tissue histology can facilitate a more comprehensive characterization of disease phenotypes.This review summarizes the recent advancements in the molecular imaging modalities and methodologies for in-depth spatial analysis.It explores their applications,challenges,and potential opportunities in the field of OA.Additionally,this review provides a perspective on the potential research directions for these contemporary approaches that can meet the requirements of clinical diagnoses and the establishment of therapeutic targets for OA. 展开更多
关键词 INSIGHT SPATIAL enable
下载PDF
Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts 被引量:1
16
作者 Mengmeng SONG Dazhi YANG +7 位作者 Sebastian LERCH Xiang'ao XIA Gokhan Mert YAGLI Jamie M.BRIGHT Yanbo SHEN Bai LIU Xingli LIU Martin Janos MAYER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1417-1437,共21页
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil... Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks. 展开更多
关键词 ensemble weather forecasting forecast calibration non-crossing quantile regression neural network CORP reliability diagram POST-PROCESSING
下载PDF
Detection Algorithm of Laboratory Personnel Irregularities Based on Improved YOLOv7
17
作者 Yongliang Yang Linghua Xu +2 位作者 Maolin Luo Xiao Wang Min Cao 《Computers, Materials & Continua》 SCIE EI 2024年第2期2741-2765,共25页
Due to the complex environment of the university laboratory,personnel flow intensive,personnel irregular behavior is easy to cause security risks.Monitoring using mainstream detection algorithms suffers from low detec... Due to the complex environment of the university laboratory,personnel flow intensive,personnel irregular behavior is easy to cause security risks.Monitoring using mainstream detection algorithms suffers from low detection accuracy and slow speed.Therefore,the current management of personnel behavior mainly relies on institutional constraints,education and training,on-site supervision,etc.,which is time-consuming and ineffective.Given the above situation,this paper proposes an improved You Only Look Once version 7(YOLOv7)to achieve the purpose of quickly detecting irregular behaviors of laboratory personnel while ensuring high detection accuracy.First,to better capture the shape features of the target,deformable convolutional networks(DCN)is used in the backbone part of the model to replace the traditional convolution to improve the detection accuracy and speed.Second,to enhance the extraction of important features and suppress useless features,this paper proposes a new convolutional block attention module_efficient channel attention(CBAM_E)for embedding the neck network to improve the model’s ability to extract features from complex scenes.Finally,to reduce the influence of angle factor and bounding box regression accuracy,this paper proposes a newα-SCYLLA intersection over union(α-SIoU)instead of the complete intersection over union(CIoU),which improves the regression accuracy while increasing the convergence speed.Comparison experiments on public and homemade datasets show that the improved algorithm outperforms the original algorithm in all evaluation indexes,with an increase of 2.92%in the precision rate,4.14%in the recall rate,0.0356 in the weighted harmonic mean,3.60%in the mAP@0.5 value,and a reduction in the number of parameters and complexity.Compared with the mainstream algorithm,the improved algorithm has higher detection accuracy,faster convergence speed,and better actual recognition effect,indicating the effectiveness of the improved algorithm in this paper and its potential for practical application in laboratory scenarios. 展开更多
关键词 University laboratory personnel behavior YOLOv7 deformable convolutional networks attention module intersection over union
下载PDF
Robust optimal dispatch strategy of integrated energy system considering CHP-P2G-CCS
18
作者 Bin Zhang Yihui Xia Xiaotao Peng 《Global Energy Interconnection》 EI CSCD 2024年第1期14-24,共11页
Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model... Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model considering P2G and carbon capture systems,and a two-stage robust optimization model of the electricity-heat-gascold integrated energy system was developed.First,a CHP model considering the P2G and carbon capture system was established,and the electric-thermal coupling characteristics and P2G capacity constraints of the model were derived,which proved that the model could weaken the electric-thermal coupling characteristics,increase the electric power regulation range,and reduce carbon emissions.Subsequently,a two-stage robust optimal scheduling model of an IES was constructed,in which the objective function in the day-ahead scheduling stage was to minimize the start-up and shutdown costs.The objective function in the real-time scheduling stage was to minimize the equipment operating costs,carbon emission costs,wind curtailment,and solar curtailment costs,considering multiple uncertainties.Finally,after the objective function is linearized with a ψ-piecewise method,the model is solved based on the C&CG algorithm.Simulation results show that the proposed model can effectively absorb renewable energy and reduce the total cost of the system. 展开更多
关键词 Combined heat and power Power-to-gas Carbon capture system Integrated energy system Robust optimization
下载PDF
An improved initial rotor position estimation method using high-frequency pulsating voltage injection for PMSM
19
作者 Yang Jiang Ming Cheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期19-29,共11页
High frequency pulsating voltage injection method is a good candidate for detecting the initial rotor position of permanent magnet synchronous motor.However,traditional methods require a large number of filters,which ... High frequency pulsating voltage injection method is a good candidate for detecting the initial rotor position of permanent magnet synchronous motor.However,traditional methods require a large number of filters,which leads to the deterioration of system stability and dynamic performance.In order to solve these problems,a new signal demodulation method is proposed in this paper.The proposed new method can directly obtain the amplitude of high-frequency current,thus eliminating the use of filters,improving system stability and dynamic performance and saving the work of adjusting filter parameters.In addition,a new magnetic polarity detection method is proposed,which is robust to current measurement noise.Finally,experiments verify the effectiveness of the method. 展开更多
关键词 Initial position detection Signal demodulation algorithm Magnetic polarity detection Filter elimination
下载PDF
Low-frequency oscillation of train-network system considering traction power supply mode
20
作者 Yuchen Liu Xiaoqin Lyu +1 位作者 Mingyuan Chang Qiqi Yang 《Railway Engineering Science》 EI 2024年第2期244-256,共13页
The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified ra... The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink. 展开更多
关键词 Low-frequency oscillation Train-network system Modal analysis Bilateral power supply Participation factor
下载PDF
上一页 1 2 138 下一页 到第
使用帮助 返回顶部