A micromechanical model based on discrete element method(DEM) was employed to investigate the effects of aggregate size and specimen scale on the cracking behavior of asphalt mixture. An algorithm for generating thr...A micromechanical model based on discrete element method(DEM) was employed to investigate the effects of aggregate size and specimen scale on the cracking behavior of asphalt mixture. An algorithm for generating three-dimensional aggregates that can reflect the realistic geometry such as shape, size and fracture surface of aggregate particles was developed using a user-defined procedure coded with FISH language in particle flow code in three-dimensions(PFC3 D). The parallel-bond model(PBM), linear contact model(LCM), and slip model(SM), whose sets of micro parameters were obtained by comparing experimental tests with numerical simulation results, were used to characterize the internal contact behavior of asphalt mixture. Digital asphalt mixture specimens were used to simulate the effects of aggregate size and specimen scale on the cracking behavior by the indirect tensile(IDT) test. Some conclusions can be drawn as follows: Both cracks and IDT strength decrease with increasing aggregate size. However, the heterogeneity of contact-force distribution augments with increasing aggregate size, especially with 13.2-16 mm aggregate. The aggregate size of 4.75-9.5 mm dominates in forming skeleton structure for asphalt mixture. The IDT strength decreases and cracks augment with increasing sample scale. The crack growth can be well interpreted from the perspective of energy analysis. The conclusions show that the proposed micromechanical model is suitable for the simulation of crack propagation. This study provides an assistant tool to further study the cracking behavior of particle-reinforced composites material such as asphalt mixture and Portland cement concrete.展开更多
Ideological and political construction of curriculum is the key link to implement the fundamental task of moral education.Focusing on the training objectives of civil engineering professionals in the new era,combined ...Ideological and political construction of curriculum is the key link to implement the fundamental task of moral education.Focusing on the training objectives of civil engineering professionals in the new era,combined with the teaching concepts of moral education and student-centered education,the teaching objectives for the course of road survey and design have been re-set.The implementation plan of ideological and political education has been put into practice by involving excellent engineering cases,stories of outstanding figures in this field,traffic accidents,design concepts and technological innovation to explore the methods of integrating ideological and political cases into curriculum teaching for a continuous improvement of the promotion of curriculum ideological and political education to the teaching quality of professional courses.展开更多
Purpose–This study aims to investigate the safety and liability of autonomous vehicles(AVs),and identify the contributing factors quantitatively so as to provide potential insights on safety and liability of AVs.Desi...Purpose–This study aims to investigate the safety and liability of autonomous vehicles(AVs),and identify the contributing factors quantitatively so as to provide potential insights on safety and liability of AVs.Design/methodology/approach–The actual crash data were obtained from California DMV and Sohu websites involved in collisions of AVs from 2015 to 2021 with 210 observations.The Bayesian random parameter ordered probit model was proposed to reflect the safety and liability of AVs,respectively,as well as accommodating the heterogeneity issue simultaneously.Findings–The findings show that day,location and crash type were significant factors of injury severity while location and crash reason were significant influencing the liability.Originality/value–The results provide meaningful countermeasures to support the policymakers or practitioners making strategies or regulations about AV safety and liability.展开更多
Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges.In the past 10 years,the pavement infrastructure strongly supports the rapid development of the global so...Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges.In the past 10 years,the pavement infrastructure strongly supports the rapid development of the global social economy.New theories,new methods,new technologies and new materials related to pavement engineering are emerging.Deterioration of pavement infrastructure is a typical multi-physics problem.Because of actual coupled behaviors of traffic and environmental conditions,predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis.In order to summarize the current and determine the future research of pavement engineering,Journal of Traffic and Transportation Engineering(English Edition)has launched a review paper on the topic of"New innovations in pavement materials and engineering:A review on pavement engineering research 2021".Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering,this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world.The content includes asphalt binder performance and modeling,mixture performance and modeling of pavement materials,multi-scale mechanics,green and sustainable pavement,and intelligent pavement.Overall,this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering.展开更多
The heat source of an air-conditioned room has an important effect on the indoor environment. The release rates of heat sources are related to the comfort of the designed thermal environment, so they must be determine...The heat source of an air-conditioned room has an important effect on the indoor environment. The release rates of heat sources are related to the comfort of the designed thermal environment, so they must be determined. Traditional design methods rely on iterative guess-and-correct, which consumes resources and time and cannot meet the needs of modern design. This study aims to establish an inverse model of Tikhonov regularization and least square optimization by using computational fluid dynamics (CFD), so that researchers can accurately determine the time release rate of multiple heat sources with known parameters. The temporal release rates can then be solved based on the inverse matrix operation with the temperature series at different discrete times. The study speeds up the solving process and expresses the temperature as the convolution integral between the temperature response of the thermal response factor and the arbitrary release rate. The results show that applying the above method to the quantization of the temporal release rates of three heat sources in a three-dimensional cavity can correctly determine the temporal release rates of multiple heat sources. The errors between the inversely determined release rates and the actual release rates are less than 40%.展开更多
基金Funded by the National Natural Science Foundation of China(No.51108081)
文摘A micromechanical model based on discrete element method(DEM) was employed to investigate the effects of aggregate size and specimen scale on the cracking behavior of asphalt mixture. An algorithm for generating three-dimensional aggregates that can reflect the realistic geometry such as shape, size and fracture surface of aggregate particles was developed using a user-defined procedure coded with FISH language in particle flow code in three-dimensions(PFC3 D). The parallel-bond model(PBM), linear contact model(LCM), and slip model(SM), whose sets of micro parameters were obtained by comparing experimental tests with numerical simulation results, were used to characterize the internal contact behavior of asphalt mixture. Digital asphalt mixture specimens were used to simulate the effects of aggregate size and specimen scale on the cracking behavior by the indirect tensile(IDT) test. Some conclusions can be drawn as follows: Both cracks and IDT strength decrease with increasing aggregate size. However, the heterogeneity of contact-force distribution augments with increasing aggregate size, especially with 13.2-16 mm aggregate. The aggregate size of 4.75-9.5 mm dominates in forming skeleton structure for asphalt mixture. The IDT strength decreases and cracks augment with increasing sample scale. The crack growth can be well interpreted from the perspective of energy analysis. The conclusions show that the proposed micromechanical model is suitable for the simulation of crack propagation. This study provides an assistant tool to further study the cracking behavior of particle-reinforced composites material such as asphalt mixture and Portland cement concrete.
文摘Ideological and political construction of curriculum is the key link to implement the fundamental task of moral education.Focusing on the training objectives of civil engineering professionals in the new era,combined with the teaching concepts of moral education and student-centered education,the teaching objectives for the course of road survey and design have been re-set.The implementation plan of ideological and political education has been put into practice by involving excellent engineering cases,stories of outstanding figures in this field,traffic accidents,design concepts and technological innovation to explore the methods of integrating ideological and political cases into curriculum teaching for a continuous improvement of the promotion of curriculum ideological and political education to the teaching quality of professional courses.
基金National Natural Science Foundation of China(No.52072214)the project of Tsinghua University-Toyota Joint Research Center for AI technology of Automated Vehicle(No.TTAD2021-10).
文摘Purpose–This study aims to investigate the safety and liability of autonomous vehicles(AVs),and identify the contributing factors quantitatively so as to provide potential insights on safety and liability of AVs.Design/methodology/approach–The actual crash data were obtained from California DMV and Sohu websites involved in collisions of AVs from 2015 to 2021 with 210 observations.The Bayesian random parameter ordered probit model was proposed to reflect the safety and liability of AVs,respectively,as well as accommodating the heterogeneity issue simultaneously.Findings–The findings show that day,location and crash type were significant factors of injury severity while location and crash reason were significant influencing the liability.Originality/value–The results provide meaningful countermeasures to support the policymakers or practitioners making strategies or regulations about AV safety and liability.
基金National Key R&D Program of China(No.2018YFB1600200,2021YFB1600200)National Natural Science Foundation of China(No.51608457,51778038,51808016,51808403,51908057,51908072,51908165,51908331,52008029,52008069,52078018,52078025,52078049,52078209,52108403,52122809,52178417)+9 种基金Marie Sk?odowska-Curie Individual Fellowships of the European Commission’s Horizon 2020 programme(No.101024139)Natural Science Foundation of Heilongjiang Province(No.JJ2020ZD0015)China Postdoctoral Science Foundation funded project(No.BX20180088)Research Capability Enhancement Program for Young Professors of Beijing University of Civil Engineering and Architecture(No.02080921021)Young Scholars of Beijing Talent Program(No.02082721009)Beijing Municipal Natural Science Foundation and Beijing Municipal Education Commission(No.KZ201910016017)German Research Foundation(No.OE 514/15-1(459436571))Fundamental Research Funds for the Central Universities(No.2020kfyXJJS127)Marie Sk?odowska-Curie Individual Fellowships of the European Commission’s Horizon 2020 Programme(No.101030767)Research Fund for High Level Talent Program(No.22120210108)。
文摘Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges.In the past 10 years,the pavement infrastructure strongly supports the rapid development of the global social economy.New theories,new methods,new technologies and new materials related to pavement engineering are emerging.Deterioration of pavement infrastructure is a typical multi-physics problem.Because of actual coupled behaviors of traffic and environmental conditions,predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis.In order to summarize the current and determine the future research of pavement engineering,Journal of Traffic and Transportation Engineering(English Edition)has launched a review paper on the topic of"New innovations in pavement materials and engineering:A review on pavement engineering research 2021".Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering,this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world.The content includes asphalt binder performance and modeling,mixture performance and modeling of pavement materials,multi-scale mechanics,green and sustainable pavement,and intelligent pavement.Overall,this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering.
基金This research was supported by the National Natural Science Foundation of China(No.51708146 and No.51708084)Guangxi Natural Science Foundation(No.2018GXNSFAA281283)+1 种基金Guangxi Science and Technology Project(No.Guike AD18281046)and Guangxi Natural Science Foundation(No.2017GXNSFBA198148).
文摘The heat source of an air-conditioned room has an important effect on the indoor environment. The release rates of heat sources are related to the comfort of the designed thermal environment, so they must be determined. Traditional design methods rely on iterative guess-and-correct, which consumes resources and time and cannot meet the needs of modern design. This study aims to establish an inverse model of Tikhonov regularization and least square optimization by using computational fluid dynamics (CFD), so that researchers can accurately determine the time release rate of multiple heat sources with known parameters. The temporal release rates can then be solved based on the inverse matrix operation with the temperature series at different discrete times. The study speeds up the solving process and expresses the temperature as the convolution integral between the temperature response of the thermal response factor and the arbitrary release rate. The results show that applying the above method to the quantization of the temporal release rates of three heat sources in a three-dimensional cavity can correctly determine the temporal release rates of multiple heat sources. The errors between the inversely determined release rates and the actual release rates are less than 40%.