期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
Characteristics of atmospheric boundary layer structure and its influencing factors under different sea and land positions in Europe
1
作者 YeHui Zhang XinPeng Yong +2 位作者 HouFu Zhou HaiYang Gao Na Yang 《Earth and Planetary Physics》 EI CSCD 2023年第2期257-268,共12页
This study identifies quantitatively the dominant contributions of meteorological factors on the development of the boundary layer heights(BLH)in the European region,based on 32 years(1990-2021)of radiosonde observati... This study identifies quantitatively the dominant contributions of meteorological factors on the development of the boundary layer heights(BLH)in the European region,based on 32 years(1990-2021)of radiosonde observations.The spatial variability of the BLH is further discussed by location,by classifying recording stations as inland,coastal,or bay.We find that the BLH in Europe varies considerably from day to night and with the seasons.Nighttime BLH is higher in winter and lower in summer,with the highest BLH recorded at coastal stations.Daytime BLH at coastal stations shows a bimodal structure with peaks in spring and autumn;at inland and bay stations,daytime BLH is lower in winter and higher in summer.The daily amplitudes of BLH at the inland and bay stations are stronger than those at coastal stations.Based on our multiple linear regression analysis and our decoupling analysis of temperature and specific humidity,we report that the development of the nighttime BLH at all types of stations is strongly dominated by the variations of surface wind speed(and,at coastal stations,wind directions).The main contributors to daytime BLH are the near-surface temperature variability at most coastal and inland stations,and,at most bay stations,the variation of the near-surface specific humidity. 展开更多
关键词 atmospheric boundary layer height wind surface temperature specific humidity DECOUPLING
下载PDF
Optimal Assimilation of Microwave Upper-Level Sounding Data in CMA-GFS
2
作者 Changjiao DONG Hao HU Fuzhong WENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第10期2043-2060,共18页
Various approaches have been proposed to minimize the upper-level systematic biases in global numerical weather prediction(NWP)models by using satellite upper-air sounding channels as anchors.However,since the China M... Various approaches have been proposed to minimize the upper-level systematic biases in global numerical weather prediction(NWP)models by using satellite upper-air sounding channels as anchors.However,since the China Meteorological Administration Global Forecast System(CMA-GFS)has a model top near 0.1 hPa(60 km),the upper-level temperature bias may exceed 4 K near 1 hPa and further extend to 5 hPa.In this study,channels 12–14 of the Advanced Microwave Sounding Unit A(AMSU-A)onboard five satellites of NOAA and METOP,whose weighting function peaks range from 10 to 2 hPa are all used as anchor observations in CMA-GFS.It is shown that the new“Anchor”approach can effectively reduce the biases near the model top and their downward propagation in three-month assimilation cycles.The bias growth rate of simulated upper-level channel observations is reduced to±0.001 K d^(–1),compared to–0.03 K d^(–1)derived from the current dynamic correction scheme.The relatively stable bias significantly improves the upper-level analysis field and leads to better global medium-range forecasts up to 10 days with significant reductions in the temperature and geopotential forecast error above 10 hPa. 展开更多
关键词 CMA-GFS upper-level model bias anchoring bias correction satellite microwave data assimilation
下载PDF
Distribution and Formation Causes of PM_(2.5) and O_(3) Double High Pollution Events in China during 2013–20
3
作者 Zhixuan TONG Yingying YAN +6 位作者 Shaofei KONG Jintai LIN Nan CHEN Bo ZHU Jing MA Tianliang ZHAO Shihua QI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1235-1250,I0004-I0021,共34页
Fine particulate matter(PM_(2.5))and ozone(O_(3))double high pollution(DHP)events have occurred frequently over China in recent years,but their causes are not completely clear.In this study,the spatiotemporal distribu... Fine particulate matter(PM_(2.5))and ozone(O_(3))double high pollution(DHP)events have occurred frequently over China in recent years,but their causes are not completely clear.In this study,the spatiotemporal distribution of DHP events in China during 2013–20 is analyzed.The synoptic types affecting DHP events are identified with the Lamb–Jenkinson circulation classification method.The meteorological and chemical causes of DHP events controlled by the main synoptic types are further investigated.Results show that DHP events(1655 in total for China during 2013–20)mainly occur over the North China Plain,Yangtze River Delta,Pearl River Delta,Sichuan Basin,and Central China.The occurrence frequency increases by 5.1%during 2013–15,and then decreases by 56.1%during 2015–20.The main circulation types of DHP events are“cyclone”and“anticyclone”,accounting for over 40%of all DHP events over five main polluted regions in China,followed by southerly or easterly flat airflow types,like“southeast”,“southwest”,and“east”.Compared with non-DHP events,DHP events are characterized by static or weak wind,high temperature(20.9℃ versus 23.1℃)and low humidity(70.0%versus 64.9%).The diurnal cycles of meteorological conditions cause PM_(2.5)(0300–1200 LST,Local Standard Time=UTC+8 hours)and O_(3)(1500–2100 LST)to exceed the national standards at different periods of the DHP day.Three pollutant conversion indices further indicate the rapid secondary conversions during DHP events,and thus the concentrations of NO_(2),SO_(2) and volatile organic compounds decrease by 13.1%,4.7%and 4.4%,respectively.The results of this study can be informative for future decisions on the management of DHP events. 展开更多
关键词 double high pollution events PM_(2.5) OZONE spatiotemporal distribution meteorological causes chemical composition characteristics
下载PDF
Consistency of Tropospheric Water Vapor between Reanalyses and Himawari-8/AHI Measurements over East Asia
4
作者 Di DI Jun LI +3 位作者 Yunheng XUE Min MIN Bo LI Zhenglong LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期19-38,共20页
High spatiotemporal resolution radiances from the advanced imagers onboard the new generation of geostationary weather satellites provide a unique opportunity to evaluate the abilities of various reanalysis datasets t... High spatiotemporal resolution radiances from the advanced imagers onboard the new generation of geostationary weather satellites provide a unique opportunity to evaluate the abilities of various reanalysis datasets to depict multilayer tropospheric water vapor(WV),thereby enhancing our understanding of the deficiencies of WV in reanalysis datasets.Based on daily measurements from the Advanced Himawari Imager(AHI)onboard the Himawari-8 satellite in 2016,the bias features of multilayer WV from six reanalysis datasets over East Asia are thoroughly evaluated.The assessments show that wet biases exist in the upper troposphere in all six reanalysis datasets;in particular,these biases are much larger in summer.Overall,we find better depictions of WV in the middle troposphere than in the upper troposphere.The accuracy of WV in the ERA5 dataset is the highest,in terms of the bias magnitude,dispersion,and pattern similarity.The characteristics of the WV bias over the Tibetan Plateau are significantly different from those over other parts of East Asia.In addition,the reanalysis datasets all capture the shift of the subtropical high very well,with ERA5 performing better overall. 展开更多
关键词 AHI reanalysis dataset multilayer water vapor assessment radiative transfer model
下载PDF
Numerical Simulation of Macro-and Micro-structures of Intense Convective Clouds with a Spectral Bin Microphysics Model 被引量:4
5
作者 刘晓莉 牛生杰 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第5期1078-1088,共11页
By use of a three-dimensional compressible non-hydrostatic convective cloud model with detailed microphysics featuring spectral bins of cloud condensation nuclei (CCN), liquid droplets, ice crystals, snow and graupe... By use of a three-dimensional compressible non-hydrostatic convective cloud model with detailed microphysics featuring spectral bins of cloud condensation nuclei (CCN), liquid droplets, ice crystals, snow and graupel particles, the spatial and temporal distributions of hydrometeors in a supercell observed by the (Severe Thunderstorm Electrification and Precipitation Study) STEPS triple-radar network are simulated and analyzed. The bin model is also employed to study the effect of CCN concentration on the evolution characteristics of the supercell. It is found that the CCN concentration not only affects the concentration and spectral distribution of water droplets, but also influences the characteristics of ice crystals and graupel particles. With a larger number of CCN, more water droplets and ice crystals are produced and the growth of graupel is restrained. With a small quantity of CCN the production of large size water droplets are promoted by initially small concentrations of water droplets and ice crystals, leading to earlier formation of small size graupel and restraining the recycling growth of graupel, and thus inhibiting the formation of large size graupel (or small size hail). It can be concluded that both the macroscopic airflow and microphysical processes influence the formation and growth of large size graupel (or small size hail). In regions with heavy pollution, a high concentration of CCN may restrain the formation of graupel and hail, and in extremely clean regions, excessively low concentrations of CCN may also limit the formation of large size graupel (hail). 展开更多
关键词 spectral bin microphysics macro-micro structures concentration of CCN
下载PDF
Derivation of Cloud-Free-Region Atmospheric Motion Vectors from FY-2E Thermal Infrared Imagery 被引量:3
6
作者 Zhenhui WANG Xinxiu SUI +5 位作者 Qing ZHANG Lu YANG Hang ZHAO Min TANG Yizhe ZHAN Zhiguo ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第2期272-282,共11页
The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the... The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split win- dow (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors. 展开更多
关键词 atmospheric motion vector cloud-free area FY-2E IR split window imagery difference method
下载PDF
THE IMPACT OF CUMULUS PARAMETERIZATIONS AND MICROPHYSICS SCHEMES UNDER DIFFERENT COMBINATIONS ON TYPHOON TRACK PREDICTION 被引量:1
7
作者 河惠卿 王振会 +2 位作者 金正润 牛生杰 徐爱淑 《Journal of Tropical Meteorology》 SCIE 2011年第2期113-119,共7页
This study examines the effects of cumulus parameterizations and microphysics schemes on the track forecast of typhoon Nabi using the Weather Research Forecast model. The study found that the effects of cumulus parame... This study examines the effects of cumulus parameterizations and microphysics schemes on the track forecast of typhoon Nabi using the Weather Research Forecast model. The study found that the effects of cumulus parameterizations on typhoon track forecast were comparatively strong and the typhoon track forecast of Kain-Fritsch (KF) was superior to that of Betts-Miller (BM). When KF was selected, the simulated results would be improved if microphysics schemes were selected than otherwise. The results from Ferrier, WSM6, and Lin were very close to those in the best track. KF performed well with the simulations of the western extension and eastern contraction changes of a North Pacific high as well as the distribution and strength of the typhoon wind field. 展开更多
关键词 cumulus parameterizations microphysics schemes typhoon track prediction
下载PDF
Analysis of the record-breaking August 2021 rainfall over the Greenland Ice Sheet
8
作者 DOU Tingfeng XIE Zuowei +12 位作者 Jason E.BOX YANG Qing YANG Yifan TENG Shiwen XU Gaojie LIU Chao LI Xichen Derek HOUTZ GONG Xun DU Zhiheng DING Minghu YU Yongqiang XIAO Cunde 《Advances in Polar Science》 CSCD 2023年第3期165-176,共12页
Rainfall was witnessed for the first time at the highest area of the Greenland Ice Sheet on 14 August,2021.The thermodynamic mechanisms supporting the rainfall are revealed by ERA5 reanalysis,in-situ and satellite dat... Rainfall was witnessed for the first time at the highest area of the Greenland Ice Sheet on 14 August,2021.The thermodynamic mechanisms supporting the rainfall are revealed by ERA5 reanalysis,in-situ and satellite data.We find that a strong southward intrusion of the polar vortex favored the maintenance of a deep cyclone over Baffin Island and an amplification of anticyclonic circulation over the southeastern ice sheet,which pumped warm and moist air toward Greenland from anomalously warm waters south of Greenland.Across a wide swath of the ice sheet,atmospheric uplift maintained above-melting and rainfall conditions via condensation and enhanced downward infrared irradiance.Without the low-level liquid clouds,the spatial extent and duration of the rainfall would have been smaller.Over the ice sheet topographic summit,the air temperature from the ground to 250 hPa level was~2℃higher than the previous record set on 12 July,2012.Such events may occur more frequently with the decreased temperature contrast between the Arctic and the mid-latitude regions that drives highly amplified jet streams.Thus,this extreme event serves as a harbinger of a more likely wet surface condition across all elevations of the ice sheet. 展开更多
关键词 Greenland Ice Sheet RAINFALL polar vortex liquid cloud
下载PDF
Analysis of Heavy Precipitation Process in North China from August 23 to 24, 2020
9
作者 Yunfei Qi 《Journal of Geoscience and Environment Protection》 2023年第4期64-71,共8页
In order to better understand the formation mechanism of rainstorm in China and promote disaster prevention and reduction, based on the meteorological data of National Meteorological Information Center and Japan Meteo... In order to better understand the formation mechanism of rainstorm in China and promote disaster prevention and reduction, based on the meteorological data of National Meteorological Information Center and Japan Meteorological Agency, this paper draws the isobaric surface map of 850 hPa and 500 hPa, relative humidity and precipitation distribution map. In this study, synoptic methods were used to analyze the heavy precipitation process in North China from August 23th to 24th, 2020. The results show that 1) The formation of short-term heavy precipitation requires sufficient water vapor and very strong upward movement;2) the heavy precipitation in August 23th to 24th 2020 in North China was influenced by the upper-level trough line, cold vortex and cold front, which made the warm and cold air strongly converge over North China, resulting in strong convective weather;3) the heavy rainfall over North China was also influenced by Typhoon Bawei, which caused maximum precipitation and air humidity. 展开更多
关键词 North China Short Time Heavy Precipitation TYPHOON Convective Weather
下载PDF
The dawn−dusk asymmetry in mesosphere and lower thermosphere temperature disturbances during geomagnetic storms at high latitude
10
作者 GuanChun Wei JianYong Lu +2 位作者 Fen Tang JingYuan Li Meng Sun 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期356-367,共12页
Utilizing observations by the Sounding of the Atmosphere using Broadband Emission Radiometry(SABER)instrument,we quantitatively assessed the dawn-dusk asymmetry in temperature disturbances within the high-latitude mes... Utilizing observations by the Sounding of the Atmosphere using Broadband Emission Radiometry(SABER)instrument,we quantitatively assessed the dawn-dusk asymmetry in temperature disturbances within the high-latitude mesosphere and lower thermosphere(MLT)during the main phase of geomagnetic storms in this study.An analysis of five geomagnetic superstorm events indicated that during the main phase,negative temperature disturbances were more prevalent on the dawn side than on the dusk side in the high-latitude MLT region.Results of a statistical analysis of 54 geomagnetic storm events also revealed a notable disparity in temperature disturbances between the dawn and dusk sides.At high latitudes,38.2%of the observational points on the dawn side exhibited negative temperature disturbances(less than−5 K),whereas on the dusk side,this percentage was only 29.5%.In contrast,at mid-latitudes,these proportions were 34.1%and 36.5%,respectively,showing no significant difference.We also conducted a statistical analysis of temperature disturbances at different altitudes,which revealed an increase in the proportion of warming disturbances with altitude.Conversely,the proportion of cooling disturbances initially rose with altitude,reaching a peak around 105 km,and subsequently decreased.These temperature disturbance differences could be explained by the day-night asymmetry in vertical wind disturbances during storm conditions. 展开更多
关键词 DAWN dusk asymmetry SABER(Sounding of the Atmosphere using Broadband Emission Radiometry) geomagnetic storms mesosphere and lower thermosphere
下载PDF
Improving Satellite-Retrieved Cloud Base Height with Ground-Based Cloud Radar Measurements
11
作者 Zhonghui TAN Ju WANG +3 位作者 Jianping GUO Chao LIU Miao ZHANG Shuo MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2131-2140,共10页
Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in p... Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates. 展开更多
关键词 cloud base height passive radiometer ground-based cloud radar remote sensing
下载PDF
Analysis of the Microphysical Structure of Heavy Fog Using a Droplet Spectrometer:A Case Study 被引量:35
12
作者 牛生杰 陆春松 +3 位作者 刘延刚 赵丽娟 吕晶晶 杨军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第6期1259-1275,共17页
The microphysical properties of a long-lasting heavy fog event are examined based on the results from a comprehensive field campaign conducted during the winter of 2006 at Pancheng (32.2°N, 118.7°E), Jiang... The microphysical properties of a long-lasting heavy fog event are examined based on the results from a comprehensive field campaign conducted during the winter of 2006 at Pancheng (32.2°N, 118.7°E), Jiangsu Province, China. It is demonstrated that the key microphysical properties (liquid water content, fog droplet concentration, mean radius and standard deviation) exhibited positive correlations with one another in general, and that the 5-min-average maximum value of fog liquid water content was sometimes greater than 0.5 g m-3. Further analysis shows that the unique combination of positive correlations likely arose from the simultaneous supply of moist air and fog condensation nuclei associated with the advection of warm air, which further led to high liquid water content. High values of liquid water content and droplet concentration conspired to cause low visibility (〈50 m) for a prolonged period of about 40 h. Examination of the microphysical relationships conditioned by the corresponding autoconversion threshold functions shows that the collision-coalescence process was sometimes likely to occur, weakening the positive correlations induced by droplet activation and condensational growth. Statistical analysis shows that the observed droplet size distribution can be described well by the Gamma distribution. 展开更多
关键词 fog microphysics positive correlation high liquid water content low visibility warm and moistair
下载PDF
Characteristics of Surface Solar Radiation under Different Air Pollution Conditions over Nanjing, China: Observation and Simulation 被引量:7
13
作者 Hao LUO Yong HAN +2 位作者 Chunsong LU Jun YANG Yonghua WU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第10期1047-1059,共13页
Surface solar radiation (SSR) can affect climate, the hydrological cycle, plant photosynthesis, and solar power. The values of solar radiation at the surface reflect the influence of human activity on radiative climat... Surface solar radiation (SSR) can affect climate, the hydrological cycle, plant photosynthesis, and solar power. The values of solar radiation at the surface reflect the influence of human activity on radiative climate and environmental effects, so it is a key parameter in the evaluation of climate change and air pollution due to anthropogenic disturbances. This study presents the characteristics of the SSR variation in Nanjing, China, from March 2016 to June 2017, using a combined set of pyranometer and pyrheliometer observations. The SSR seasonal variation and statistical properties are investigated and characterized under different air pollution levels and visibilities. We discuss seasonal variations in visibility, air quality index (AQI), particulate matter (PM10 and PM2.5), and their correlations with SSR. The scattering of solar radiation by particulate matter varies significantly with particle size. Compared with the particulate matter with aerodynamic diameter between 2.5 μm and 10 μm (PM2.5-10), we found that the PM2.5 dominates the variation of scattered radiation due to the differences of single-scattering albedo and phase function. Because of the correlation between PM2.5 and SSR, it is an effective and direct method to estimate PM2.5 by the value of SSR, or vice versa to obtain the SSR by the value of PM2.5. Under clear-sky conditions (clearness index ≥0.5), the visibility is negatively correlated with the diffuse fraction, AQI, PM10, and PM2.5, and their correlation coefficients are ?0.50,?0.60,?0.76, and ?0.92, respectively. The results indicate the linkage between scattered radiation and air quality through the value of visibility. 展开更多
关键词 surface solar radiation air pollution PARTICULATE MATTER VISIBILITY RADIATIVE transfer
下载PDF
The Influence of Freezing Drizzle on Wire Icing during Freezing Fog Events 被引量:6
14
作者 周悦 牛生杰 吕晶晶 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第4期1053-1069,共17页
Both direct and indirect effects of freezing drizzle on ice accretion were analyzed for ten freezing drizzle events during a comprehensive ice thickness, fog, and precipitation observation campaign carried out during ... Both direct and indirect effects of freezing drizzle on ice accretion were analyzed for ten freezing drizzle events during a comprehensive ice thickness, fog, and precipitation observation campaign carried out during the winter of 2008 and 2009 at Enshi Radar Station (30°17′N, 109°16′E), Hubei Province, China. The growth rate of ice thickness was 0.85 mm h-1 during the freezing drizzle period, while the rate was only 0:4 mm h-1 without sleet and freezing drizzle. The rain intensity, liquid water content (LWC), and diameter of freezing drizzle stayed at low values. The development of microphysical properties of fog was suppressed in the freezing drizzle period. A threshold diameter (Dc) was proposed to estimate the influence of freezing drizzle on different size ranges of fog droplets. Fog droplets with a diameter less than Dc would be affected slightly by freezing drizzle, while larger fog droplets would be affected significantly. Dc had a correlation with the average rain intensity, with a correlation coefficient of 0.78. The relationships among the microphysical properties of fog droplets were all positive when the effect of freezing drizzle was weak, while they became poor positive correlations, or even negative correlations during freezing drizzle period. The direct contribution of freezing drizzle to ice thickness was about 14.5%. Considering both the direct and indirect effects, we suggest that freezing drizzle could act as a "catalyst" causing serious icing conditions. 展开更多
关键词 freezing drizzle freezing fog ice accretion microphysical property promoting factor
下载PDF
Microphysical Characteristics of Sea Fog over the East Coast of Leizhou Peninsula, China 被引量:5
15
作者 赵丽娟 牛生杰 +1 位作者 张羽 徐峰 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第4期1154-1172,共19页
Microphysical properties of sea fog and correlations of these properties were analyzed based on the measurements from a comprehensive field campaign carried out from 15 March to 18 April 2010 on Donghai Island (21... Microphysical properties of sea fog and correlations of these properties were analyzed based on the measurements from a comprehensive field campaign carried out from 15 March to 18 April 2010 on Donghai Island (21°35″N, 110°32″5′E) in Zhanjiang, Guangdong Province, China. There were four types of circula- tion pattern in favor of sea fog events in this area identified, and the synoptic weather pattern was found to influence the microphysical properties of the sea fogs. Those influenced by a warm sector in front of a cold front or the anterior part of low pressure were found to usually have a much longer duration, lower visibility, greater liquid water content, and bigger fog droplet sizes. A fog droplet number concentration of N≥1 cm-a and liquid water content of L≥0.001 g m-a can be used to define sea fogs in this area. The type of fog droplet size distribution of the sea fog events was mostly monotonically-decreasing, with the spectrum width always being 〉20 μm. The significant temporal variation of N was due in large part to the number concentration variation of fog droplets with radius 〈3 μm. A strong collection process appeared when droplet spectrum width was 〉10 μm, which subsequently led to the sudden increase of droplet spectrmn width. The doln- inant physical process during the sea fog events was activation with subsequent condensational growth or reversible evaporation processes, but turbulent mixing also played an important role. The collection process occurred, but was not vital. 展开更多
关键词 microphysical property microphysical correlation fog droplet size distribution the South China Sea
下载PDF
Observation and modeling of vertical carbon dioxide distribution in a heavily polluted suburban environment 被引量:3
16
作者 BAO Zhongxiu HAN Pengfei +6 位作者 ZENG Ning LIU Di CAI Qixiang WANG Yinghong TANG Guiqian ZHENG Ke YAO Bo 《Atmospheric and Oceanic Science Letters》 CSCD 2020年第4期371-379,共9页
The vertical distribution of carbon dioxide(CO2)is important for the calibration and validation of transport models and remote sensing measurements.Due to the large mass and volume of traditional instruments as well a... The vertical distribution of carbon dioxide(CO2)is important for the calibration and validation of transport models and remote sensing measurements.Due to the large mass and volume of traditional instruments as well as supporting systems,in-situ measurements of the CO2 vertical profile within the boundary layer are rare.This study used a miniaturized CO2 monitoring instrument based on a low-cost non-dispersive infrared(NDIR)sensor to measure the CO2 vertical profile and meteorological parameters of the lower troposphere(0–1000 m)in southwestern Shijiazhuang,Hebei Province,China.The sensors were onboard a tethered balloon with two processes:the ascending process and the descending process.The results showed that the overall trend of CO2 concentration decreased with height.Weather conditions and CO2 emission sources caused fluctuations in CO2 concentrations.The CO2 concentration varied from morning to afternoon due mainly to the faster spread of air mass during daytime,with strong convections and the accumulation of emissions at night.The low-cost sensor produced results consistent with the traditional gas chromatography method.The Weather Research and Forecasting model could not capture the CO2 profiles well due mainly to the bad performances in boundary layer height and the potential outdated fossil fuel emissions around the experimental site.This experiment is the first successful attempt to observe the CO2 vertical distribution in the lower troposphere by using lowcost NDIR sensors.The results help us to understand the vertical structure of CO2 in the boundary layer,and provide data for calibrating and validating transport models. 展开更多
关键词 Low cost sensor co2 vertical profile tethered balloon meteorological conditions non-dispersive infrared(NDIR)
下载PDF
0-10 KM TEMPERATURE AND HUMIDITY PROFILES RETRIEVAL FROM GROUND-BASED MICROWAVE RADIOMETER 被引量:3
17
作者 BAO Yan-song CAI Xi +3 位作者 QIAN Cheng MIN Jin-zhong LU Qi-feng ZUO Quan 《Journal of Tropical Meteorology》 SCIE 2018年第2期243-252,共10页
Deviation exists between measured and simulated microwave radiometer sounding data. The bias results in low-accuracy atmospheric temperature and humidity profiles simulated by Back Propagation artificial neural networ... Deviation exists between measured and simulated microwave radiometer sounding data. The bias results in low-accuracy atmospheric temperature and humidity profiles simulated by Back Propagation artificial neural network models. This paper evaluated a retrieving atmospheric temperature and humidity profiles method by adopting an input data adjustment-based Back Propagation artificial neural networks model. First, the sounding data acquired at a Nanjing meteorological site in June 2014 were inputted into the Mono RTM Radiative transfer model to simulate atmospheric downwelling radiance at the 22 spectral channels from 22.234 GHz to 58.8 GHz, and we performed a comparison and analysis of the real observed data; an adjustment model for the measured microwave radiometer sounding data was built. Second, we simulated the sounding data of the 22 channels using the sounding data acquired at the site from 2011 to 2013. Based on the simulated rightness temperature data and the sounding data, BP neural network-based models were trained for the retrieval of atmospheric temperature, water vapor density and relative humidity profiles. Finally, we applied the adjustment model to the microwave radiometer sounding data collected in July 2014, generating the corrected data. After that, we inputted the corrected data into the BP neural network regression model to predict the atmospheric temperature, vapor density and relative humidity profile at 58 high levels from 0 to 10 km. We evaluated our model's effect by comparing its output with the real measured data and the microwave radiometer's own second-level product. The experiments showed that the inversion model improves atmospheric temperature and humidity profile retrieval accuracy; the atmospheric temperature RMS error is between 1 K and 2.0 K; the water vapor density's RMS error is between 0.2 g/m^3 and 1.93 g/m3; and the relative humidity's RMS error is between 2.5% and 18.6%. 展开更多
关键词 ground-based microwave radiometer BP neural network atmospheric profiles regression accuracy
下载PDF
Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field 被引量:1
18
作者 王长全 张贵新 +1 位作者 王新新 陈志宇 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第10期891-896,共6页
Atmospheric pressure non-thermal plasma is of interest for industrial applications. In this study, polypropylene (PP) films are modified by a dielectric barrier discharge (DBD) with a non-uniform magnetic field in... Atmospheric pressure non-thermal plasma is of interest for industrial applications. In this study, polypropylene (PP) films are modified by a dielectric barrier discharge (DBD) with a non-uniform magnetic field in air at atmospheric pressure. The surface properties of the PP films before and after a DBD treatment are studied by using contact angle measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The effect of treatment time on the surface modification with and without a magnetic field is investigated. It is found that the hydrophilic improvement depends on the treatment time and magnetic field. It is also found that surface roughness and oxygen-containing groups are introduced onto the PP film surface after the DBD treatment. Surface roughness and oxygen-containing polar functional groups of the PP films increase with the magnetic induction density. The functional groups are identified as C-O, C=O and O-C=O by using XPS analysis. It is concluded that the hydrophilic improvement of PP films treated with a magnetic field is due to a greater surface roughness and more oxygen-containing groups. 展开更多
关键词 non-thermal plasma dielectric barrier discharge (DBD) surface treatment HYDROPHILICITY magnetic field
下载PDF
Transition from the Southern Mode of the Mei-yu Front Cloud System to Other Leading Modes 被引量:1
19
作者 QIN Danyu LI Bo HUANG Yong 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第4期948-961,共14页
Based on normalized six-hourly black body temperature (TBB) data of three geostationary meteorological satellites,the leading modes of the mei-yu cloud system between 1998 and 2008 were extracted by the Empirical Or... Based on normalized six-hourly black body temperature (TBB) data of three geostationary meteorological satellites,the leading modes of the mei-yu cloud system between 1998 and 2008 were extracted by the Empirical Orthogonal Function (EOF) method,and the transition processes from the first typical leading mode to other leading modes were discussed and compared.The analysis shows that,when the southern mode (EOF1) transforms to the northeastern mode (EOF3),in the mid-troposphere,a low trough develops and moves southeastward over central and eastern China.The circulation pattern is characterized by two highs and one low in the lower troposphere.A belt of low pressure is sandwiched between the weak high over central and western China and the strong western North Pacific subtropical high (WNPSH).Cold air moves southward along the northerly flow behind the low,and meets the warm and moist air between the WNPSH and the forepart of the low trough,which leads to continuous convection.At the same time,the central extent of the WNPSH increases while its ridge extends westward.In addition,transitions from the southern mode to the dual centers mode and the tropical-low-influenced mode were found to be atypical,and so no common points could be concluded.Furthermore,the choice of threshold value can affect the number of samples discussed. 展开更多
关键词 black body temperature mei-yu front cloud system leading modes mode transition
下载PDF
Effects of Clouds and Aerosols on Surface Radiation Budget Inferred from DOE AMF at Shouxian,China 被引量:2
20
作者 QIU Yu-Jun DONG Xi-Quan +1 位作者 XI Bai-Ke WANG Zhen-Hui 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第1期39-43,共5页
Based on data collected during the first U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) field campaigns at Shouxian, east- ern China in 2008, the effects of clouds and aerosols on the surf... Based on data collected during the first U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) field campaigns at Shouxian, east- ern China in 2008, the effects of clouds and aerosols on the surface radiation budget during the period Octo- ber-December 2008 were studied. The results revealed that the largest longwave (LW), shortwave (SW), and net Aerosol Radiative Effects (AREs) are 12.7, -37.6, and -24.9 W rn-2, indicating that aerosols have LW warming impact, a strong SW cooling effect, and a net cooling ef- fect on the surface radiation budget at Shouxian during the study period 15 October-15 December 2008. The SW cloud radiative forcing (CRF) is -135.1 W m-2, much cooler than ARE (about 3.6 times), however, the LW CRF is 43.6 W m 2, much warmer than ARE, and resulting in a net CRF of-91.5 W m-2, about 3.7 times of net ARE. These results suggest that the clouds have much stronger LW warming effect and SW cooling effect on the surface radiation budget than AREs. The net surface radiation budget is dominated by SW cooling effect for both ARE and CRE. Furthermore, the precipitatable clouds (PCs) have the largest SW cooling effect and LW warming ef- fect, while optically thin high clouds have the smallest cooling effect and LW warming on the surface radiation budget. Comparing the two selected caseds, CloudSat cloud radar reflectivity agrees very well with the AMF (ARM Mobile Facility) WACR (W-band ARM Cloud Radar) measurements, particularly for cirrus cloud case. These result will provide a ground truth to validate the model simulations in the future. 展开更多
关键词 AEROSOL clouds. ARE. CRF
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部