To explore the possible impact of heterogeneous chemical processes on atmospheric trace components, a coupled box model including gas-phase chemical processes, aerosol thermodynamic equilibrium processes, and heteroge...To explore the possible impact of heterogeneous chemical processes on atmospheric trace components, a coupled box model including gas-phase chemical processes, aerosol thermodynamic equilibrium processes, and heterogeneous chemical processes on the surface of dust, black carbon (BC) and sea salt is set up to simulate the effects of heterogeneous chemistry on the aerosol surface, and analyze the primary factors affecting the heterogeneous processes. Results indicate that heterogeneous chemical processes on the aerosol surface in the atmosphere will affect the concentrations of trace gases such as H2O2, HO2, O3, NO2, NO3, HNO3 and SO2, and aerosols such as SO42-, NO3- and NH4+. Sensitivity tests suggest that the magnitude of the impact of heterogeneous processes strongly depends on aerosol concentration and the surface uptake coefficients used in the box model. However, the impact of temperature on heterogeneous chemical processes is considerably less. The "renoxification" of HNO3 will affect the components of the troPosPhere such as nitrogen oxide and ozone.展开更多
基金supported by National Key Project of Basic Research(2010CB428503,2006CB403706)the National Science and Technology Support Program(GYHY200806001-1,GYHY(QX)2007-6-36)Program for New Century Excellent Talents in University
文摘To explore the possible impact of heterogeneous chemical processes on atmospheric trace components, a coupled box model including gas-phase chemical processes, aerosol thermodynamic equilibrium processes, and heterogeneous chemical processes on the surface of dust, black carbon (BC) and sea salt is set up to simulate the effects of heterogeneous chemistry on the aerosol surface, and analyze the primary factors affecting the heterogeneous processes. Results indicate that heterogeneous chemical processes on the aerosol surface in the atmosphere will affect the concentrations of trace gases such as H2O2, HO2, O3, NO2, NO3, HNO3 and SO2, and aerosols such as SO42-, NO3- and NH4+. Sensitivity tests suggest that the magnitude of the impact of heterogeneous processes strongly depends on aerosol concentration and the surface uptake coefficients used in the box model. However, the impact of temperature on heterogeneous chemical processes is considerably less. The "renoxification" of HNO3 will affect the components of the troPosPhere such as nitrogen oxide and ozone.