期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Automatic SOC Equalization Strategy of Energy Storage Units with DC Microgrid Bus Voltage Support
1
作者 Jingjing Tian Shenglin Mo +1 位作者 Feng Zhao Xiaoqiang Chen 《Energy Engineering》 EI 2024年第2期439-459,共21页
In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load a... In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load and PV power variations in a stand-alone DC microgrid.The strategy includes primary and secondary control.Among them,the primary control suppresses the DC microgrid voltage fluctuation through the I and II section control,and the secondary control aims to correct the P-U curve of the energy storage system and the PV system,thus reducing the steady-state bus voltage excursion.The simulation results demonstrate that the proposed control strategy effectively achieves SOC balancing and enhances the immunity of bus voltage.The proposed strategy improves the voltage fluctuation suppression ability by approximately 39.4%and 43.1%under the PV power and load power fluctuation conditions,respectively.Furthermore,the steady-state deviation of the bus voltage,△U_(dc) is only 0.01–0.1 V,ensuring stable operation of the DC microgrid in fluctuating power environments. 展开更多
关键词 Automatic equalization independent DC microgrid improve droop control secondary control state of charge
下载PDF
Numerical Analysis of the Influence of Turbulence Intensity on Iced Conductors Gallop Phenomena
2
作者 Yuantao Liu Yanzhe Li +2 位作者 Shanpeng Zhao Youpeng Zhang Taizhen Zhang 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2533-2547,共15页
Turbulence is expected to play a relevant role in the so-called conductor gallop phenomena,namely,the high-amplitude,low-frequency oscillation of overhead power lines due to the formation of ice structures and the ens... Turbulence is expected to play a relevant role in the so-called conductor gallop phenomena,namely,the high-amplitude,low-frequency oscillation of overhead power lines due to the formation of ice structures and the ensu-ing effect that wind can have on these.In this work,the galloping time history of a wire with distorted(fixed in time)shape due to the formation of ice is analyzed numerically in the frame of afluid-solid coupling method for different wind speeds and levels of turbulence.The results show that the turbulence intensity has a moderate effect on the increase of the conductor’s aerodynamic lift and drag coefficients due to ice accretion;nevertheless,the corresponding changes in the torsion coefficient are very significant and complicated.A high turbulence intensity can affect the torsion coefficient in a certain range of attack angles and increase the torsion angle of the conductor.Through comparison of the galloping phenomena for different wind velocities,it is found that the related amplitude grows significantly with an increase of the wind speed.For a relatively large wind speed,the galloping amplitude is more sensitive to the turbulence intensity.Moreover,the larger the turbulence intensity,the larger the conductor’s vertical and horizontal galloping amplitudes after icing.The torsion angle also increases with an increase in the wind speed and turbulence intensity. 展开更多
关键词 Turbulence intensity iced conductor galloping amplitude fluid-solid coupling
下载PDF
Data-Driven Human-Robot Interaction Without Velocity Measurement Using Off-Policy Reinforcement Learning 被引量:3
3
作者 Yongliang Yang Zihao Ding +2 位作者 Rui Wang Hamidreza Modares Donald C.Wunsch 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第1期47-63,共17页
In this paper,we present a novel data-driven design method for the human-robot interaction(HRI)system,where a given task is achieved by cooperation between the human and the robot.The presented HRI controller design i... In this paper,we present a novel data-driven design method for the human-robot interaction(HRI)system,where a given task is achieved by cooperation between the human and the robot.The presented HRI controller design is a two-level control design approach consisting of a task-oriented performance optimization design and a plant-oriented impedance controller design.The task-oriented design minimizes the human effort and guarantees the perfect task tracking in the outer-loop,while the plant-oriented achieves the desired impedance from the human to the robot manipulator end-effector in the inner-loop.Data-driven reinforcement learning techniques are used for performance optimization in the outer-loop to assign the optimal impedance parameters.In the inner-loop,a velocity-free filter is designed to avoid the requirement of end-effector velocity measurement.On this basis,an adaptive controller is designed to achieve the desired impedance of the robot manipulator in the task space.The simulation and experiment of a robot manipulator are conducted to verify the efficacy of the presented HRI design framework. 展开更多
关键词 Adaptive impedance control data-driven method human-robot interaction(HRI) reinforcement learning velocity-free
下载PDF
Peak shaving operation optimization of high proportion new energypower generation considering wind-solar complementationand source-load coupling 被引量:3
4
作者 GU Yao-qin ZHANG Rui-ping +2 位作者 WANG Ning-bo MA Ming DONG Hai-ying 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第4期379-388,共10页
To optimize peaking operation when high proportion new energy accesses to power grid,evaluation indexes are proposed which simultaneously consider wind-solar complementation and source-load coupling.A typical wind-sol... To optimize peaking operation when high proportion new energy accesses to power grid,evaluation indexes are proposed which simultaneously consider wind-solar complementation and source-load coupling.A typical wind-solar power output scene model based on peaking demand is established which has anti-peaking characteristic.This model uses balancing scenes and key scenes with probability distribution based on improved Latin hypercube sampling(LHS)algorithm and scene reduction technology to illustrate the influence of wind-solar on peaking demand.Based on this,a peak shaving operation optimization model of high proportion new energy power generation is established.The various operating indexes after optimization in multi-scene peaking are calculated,and the ability of power grid peaking operation is compared whth that considering wind-solar complementation and source-load coupling.Finally,a case of high proportion new energy verifies the feasibility and validity of the proposed operation strategy. 展开更多
关键词 wind-solar complementation source-load coupling improved Latin hypercube sampling(LHS)algorithm typical scene peak shaving operation optimization
下载PDF
Active disturbance rejection control FCS-MPC strategy based on ESO of PMSM system 被引量:2
5
作者 ZHANG Bin WEN Xue LI Kun-qi 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第2期140-147,共8页
In order to improve the control performance of three-phase permanent magnet synchronous motor(PMSM)system,an active disturbance rejection finite control set-mode predictive control(FCS-MPC)strategy based on improved e... In order to improve the control performance of three-phase permanent magnet synchronous motor(PMSM)system,an active disturbance rejection finite control set-mode predictive control(FCS-MPC)strategy based on improved extended state observer(ESO)is proposed in this paper.ESO is designed based on the arc-hyperbolic sine function to obtain estimations of rotating speed and back electromotive force(EMF)term of motor speed.Active disturbance rejection control(ADRC)is applied as speed controller.The proposed FCS-MPC strategy aims to reduce the electromagnetic torque ripple and the complexity and calculation of the algorithm.Compared with the FCS-MPC strategy based on PI controller,the constructed control strategy can guarantee the reliable and stable operation of PMSM system,and has good speed tracking,anti-interference ability and robustness. 展开更多
关键词 extended state observer(ESO) auto disturbance rejection control(ADRC) finite control set-mode predictive control(FCS-MPC) permanent magnet synchronous motor(PMSM) arc-hyperbolic sine function
下载PDF
Vector control of induction motor based on fractional-order intelligent-integral speed controller 被引量:2
6
作者 MIAO Zhong-cui HAN Tian-liang +1 位作者 DANG Jian-wu JU Mei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第2期125-133,共9页
To improve dynamic and static performances and robustness of the induction motor speed control system based on vector control,an improved fractional-order intelligent proportional integral(IPIλ)controller was applied... To improve dynamic and static performances and robustness of the induction motor speed control system based on vector control,an improved fractional-order intelligent proportional integral(IPIλ)controller was applied to the speed controller of the vector control system,which combined the intelligent fractional integral with the proportion according to the variation of deviation.Compared with proportional integral(PI)and fractional-order proportional integral(FOPI)controllers,the IPIλcontroller achieved better control performance.The stimulation results indicate that the IPIλcontroller can not only track the given speed quickly and accurately,but also have better anti-interference and robustness for load and parameters variations. 展开更多
关键词 fractional-order intelligent-integral induction motor speed controller
下载PDF
Model predictive flux control of permanent magnet synchronous motor driven by three-level inverter based on fine-division strategy 被引量:1
7
作者 MIAO Zhongcui LI Haiyuan +1 位作者 HE Yangyang WANG Yunkun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第4期439-450,共12页
Aiming at the difficulty of setting the weight coefficient in the value function of model predictive torque control(MPTC)for permanent magnet synchronous motor(PMSM)driven by three-level inverter,a fine-division model... Aiming at the difficulty of setting the weight coefficient in the value function of model predictive torque control(MPTC)for permanent magnet synchronous motor(PMSM)driven by three-level inverter,a fine-division model predictive flux control(MPFC)method is proposed.First,establish a mathematical model between the motor torque and the stator flux linkage according to the mathematical equations of PMSM.Thus,the control of the motor torque and stator flux linkage in the MPTC is transformed into the control of a single stator flux linkage vector,omitting the cumbersome weight setting process in the traditional MPTC.The midpoint potential control strategy is proposed,which uses the characteristics of redundant small vectors to balance the midpoint potential.After that,a fine-division strategy is proposed,which effectively reduces the number of candidate vectors and the computational burden of the system.Finally,the proposed MPFC is compared with MPTC by simulation.The results show that the proposed fine-division MPFC effectively reduces the system calculation,and has the advantages of simple principle and better dynamic and steady-state control performance.The feasibility of the control strategy is verified. 展开更多
关键词 permanent magnet synchronous motor(PMSM) three-level inverter model predictive flux control(MPFC) weight coefficient midpoint potential
下载PDF
Simulation of a kind of active harmonic reduction 18-pulse rectifier 被引量:1
8
作者 CHEN Xiao-qiang ZHAO Shou-wang WANG Ying 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第2期160-168,共9页
To solve the input current harmonic pollution of the high power rectifier system,18-pulse rectifier based on a kind of active harmonic suppression technique at dc side is proposed in this paper.The pulse rectifier emp... To solve the input current harmonic pollution of the high power rectifier system,18-pulse rectifier based on a kind of active harmonic suppression technique at dc side is proposed in this paper.The pulse rectifier employs three-phase diode bridges,each of them followed by a boost converter.Unlike the conventional three-phase unity-power-factor diode rectifier,the ideal sinusoidal main currents of circuit topology are obtained by control its output current or input currents of three boost converters for approximately triangular modulation.The theoretical of modulation strategy and characteristics of input and output currents about the proposed rectifier are analyzed in detail.Simulation results by Matlab/Simulink demonstrate that the proposed rectifier draws nearly sinusoidal current and power quality index is improved.The correctness of the theoretical analysis is validated. 展开更多
关键词 18-pulse rectifier active harmonic suppression three-phase unity-power-factor sinusoidal current topology
下载PDF
Comprehensive simulation of snow crystal deposition and electric field characteristics of composite sheath improved porcelain cantilever insulator in a wind and snow environment 被引量:1
9
作者 SHENG Wangqun LI Gang +2 位作者 LI Yanzhe LI Baoxue ZHAO Shanpeng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第4期379-389,共11页
The installed porcelain insulators on existing railway lines in China are prone to“snow flash”in winter.In order to prevent the occurrence of“snow flash”and improve the reliability of the insulators,a composite-po... The installed porcelain insulators on existing railway lines in China are prone to“snow flash”in winter.In order to prevent the occurrence of“snow flash”and improve the reliability of the insulators,a composite-porcelain insulator is designed.A multi-physics coupling simulation model is built based on numerical simulation methods of the electromagnetic field theory and computational fluid dynamics.Taking average electric field intensity on the surface of the insulator as the characteristic parameter of the electric field distortion degree and the snow crystal collision coefficient and distribution coefficient as the characteristic parameter of snow crystal deposition,the characteristics of snow crystal deposition under different wind speeds and wind direction angles and the electric field characteristics under two snow cover types are analyzed.The simulation results show that the average electric field intensity of composite-porcelain insulators is 10.4%and 13.8%,respectively,lower than that of porcelain insulators in vertical and horizontal wind snow covers,which can effectively reduce the degree of electric field distortion.The collision coefficient of snow crystals on the surface of the composite-porcelain insulator sheds is 16.0%higher than that of the porcelain insulator,and the collision coefficient of the trunk and the fittings are lower 20.2%and 11.9%than that of the porcelain insulator.There is almost no change in the distribution coefficient of the insulator sheds. 展开更多
关键词 porcelain cantilever insulator snow flash snow crystal deposition electric field characteristics simulation
下载PDF
Coordinated Control Strategy for Harmonic Compensation of Multiple Active Power Filters 被引量:1
10
作者 Jianfeng Yang Rende Qi +1 位作者 Yang Liu Yu Ding 《Energy Engineering》 EI 2022年第2期609-620,共12页
In order to minimize the harmonic distortion rate of the current at the common coupling point,this paper proposes a coordinated allocation strategy of harmonic compensation capacity considering the performance of acti... In order to minimize the harmonic distortion rate of the current at the common coupling point,this paper proposes a coordinated allocation strategy of harmonic compensation capacity considering the performance of active power filters(APF).On the premise of proportional distribution of harmonic compensation capacity,the harmonic compensation rate of each APF is considered,and the harmonic current value of each APF to be compensated is obtained.At the same time,the communication topology is introduced.Each APF takes into account the compensation ability of other APFs.Finally,three APFs with different capacity and performance are configured at the harmonic source to suppress the same harmonic source,and the harmonic distortion rate is reduced to 1.73%.The simulation results show that the strategy can effectively improve the compensation capability of the multiple APF cascaded system to the power grid without increasing the installed capacity. 展开更多
关键词 Active power filter collaborative optimization harmonic compensation rate weighting factor communication topology
下载PDF
Predictive direct power control of three-phase PWM rectifier based on TOGI grid voltage sensor free algorithm
11
作者 ZHAO Feng LI Shute +4 位作者 CHEN Xiaoqiang WANG Ying GAN Yanqi NIU Xinqiang ZHANG Fan 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第4期451-459,共9页
In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)i... In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)is used to generate orthogonal signals with the same frequency to estimate the grid voltage.In addition,in view of the deviation between actual and reference power in the three-phase PWM rectifier traditional PDPC strategy,a power correction link is designed to correct the power reference value.The grid voltage sensor free algorithm based on TOGI and the corrected PDPC strategy are applied to three-phase PWM rectifier and simulated on the simulation platform.Simulation results show that the proposed method can effectively eliminate the power tracking deviation and the grid voltage.The effectiveness of the proposed method is verified by comparing the simulation results. 展开更多
关键词 three-phase PWM rectifier predictive direct power control grid voltage sensor free algorithm third-order generalized integrator power correction
下载PDF
Grid-Connected Control Strategy of VSG under Complex Grid Voltage Conditions
12
作者 Bin Zhang Yanjun Jin 《Energy Engineering》 EI 2022年第4期1467-1482,共16页
Under complex grid conditions,the grid voltage usually has an imbalance,low order harmonics,and a small of DC bias.When the grid voltage contains low order harmonics and a small amount of DC bias component,the inverte... Under complex grid conditions,the grid voltage usually has an imbalance,low order harmonics,and a small of DC bias.When the grid voltage contains low order harmonics and a small amount of DC bias component,the inverter’s output current cannot meet the grid connection requirements,and there is a three-phase current imbalance in the control strategy of common VSG under unbalanced voltage.A theoretical analysis of non-ideal power grids is carried out,and a VSG control strategy under complex operating conditions is proposed.Firstly,the third-order generalized integrator(TOGI)is used to eliminate the influence of the DC component of grid voltage.An improved delay signal cancellation(DSC)method is proposed to control the balance current and power fluctuation under unbalanced voltage based on the method of common VSG positive and negative sequence separation,It also eliminates the harmonic of command current.Then,the improved quasi proportional resonant controller(QPR)cascaded PI is used to suppress the harmonic current further so that the harmonic content of grid-connected current can meet the grid-connected requirements and achieve the three-phase current balance.Finally,the proposed strategy is verified by simulation under the control objectives of the current balance,active power,and reactive power constant. 展开更多
关键词 Complicated condition harmonic elimination VSG control DC component quasi-proportional resonance sequence current control
下载PDF
Vibration Characteristics Analysis and Structure Optimization of Catenary Portal Structure on Four-Wire Bridge
13
作者 Sihua Wang Xujie Li 《Structural Durability & Health Monitoring》 EI 2022年第4期361-382,共22页
The portal structure is the support equipment in the catenary,which bears the load of contact suspension and support equipment.In practical work,with the change of external forces,the support equipment bears complex a... The portal structure is the support equipment in the catenary,which bears the load of contact suspension and support equipment.In practical work,with the change of external forces,the support equipment bears complex and changeable loads,so it has higher requirements for its reliability and safety.In order to study the dynamic characteristics of catenary portal structure on continuous beam of four-way bridge,taking the catenary portal structure on Dshaping four-way bridge as the research object,the portal structure simulation model of bridgenetwork integration was established in Midas Civil.The maximum point of deformation and stress was determined by finite element analysis of catenary hard span equipment,and the frequency and mode of natural vibration of hard span were obtained by modal analysis.Secondly,through the field dynamic stress acquisition test,combined with the results of finite element analysis,the fault location is determined,and the vibration characteristics are analyzed.Finally,based on the results of modal analysis and vibration analysis,the method that the vibration of portal structure beam is affected by structural stiffness and vibration frequency amplitude is proposed.The torsional vibration of the portal structure beam was suppressed by increasing the stiffness of the beam and reducing the vibration conduction between the trolley and the beam,and the hard cross beam was optimized by strengthening the hanging column and the connecting beam and adding diagonal support between the pillar and the portal structure beam.By comparing the values of shear,bending moment,displacement and dynamic stress on the hard span before and after optimization,the amplitude peak after structural optimization is reduced by about 25%,and the application of oblique support and reinforcement of the beam can significantly improve the portal structure vibration. 展开更多
关键词 CATENARY portal structure vibration analysis modal analysis structural optimization
下载PDF
Model identification of continuous stirred tank reactor based on QKLMS algorithm
14
作者 LI Jun LI Xiang-yue 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第4期382-387,共6页
The continuous stirred tank reactor(CSTR)is one of the typical chemical processes.Aiming at its strong nonlinear characteristics,a quantized kernel least mean square(QKLMS)algorithm is proposed.The QKLMS algorithm is ... The continuous stirred tank reactor(CSTR)is one of the typical chemical processes.Aiming at its strong nonlinear characteristics,a quantized kernel least mean square(QKLMS)algorithm is proposed.The QKLMS algorithm is based on a simple online vector quantization technology instead of sparsification,which can compress the input or feature space and suppress the growth of the radial basis function(RBF)structure in the kernel learning algorithm.To verify the effectiveness of the algorithm,it is applied to the model identification of CSTR process to construct a nonlinear mapping relationship between coolant flow rate and product concentration.In additiion,the proposed algorithm is further compared with least squares support vector machine(LS-SVM),echo state network(ESN),extreme learning machine with kernels(KELM),etc.The experimental results show that the proposed algorithm has higher identification accuracy and better online learning ability under the same conditions. 展开更多
关键词 kernel learning algorithm quantized kernel least mean square(QKLMS) continuous stirred tank reactor(CSTR) system identification
下载PDF
Research on VSG Frequency Characteristics and Energy Storage Device Capacity and Charge-Discharge Characteristics Based on Feedforward Branch
15
作者 Baoge Zhang Shanyan Ping +3 位作者 Haoliang Shi Yi Long Boxiang Wu Yuemin Jiao 《Energy Engineering》 EI 2022年第6期2347-2367,共21页
Renewable energy is connected to the grid through the inverter,which in turn reduces the inertia and stability of the power grid itself.The traditional grid-connected inverter does not have the function of voltage reg... Renewable energy is connected to the grid through the inverter,which in turn reduces the inertia and stability of the power grid itself.The traditional grid-connected inverter does not have the function of voltage regulation and frequency regulation and can therefore no longer adapt to the new development.The virtual synchronous generator(VSG)has the function of voltage regulation and frequency regulation,which has more prominent advantages than traditional inverters.Based on the principle of VSG,the relationship between the frequency characteristics and the energy storage capacity of the feedforward branch-based virtual synchronous machine(FVSG)is derived when the input power and grid frequency change.Reveal the relationship between the virtual inertia coefficient,damping coefficient,and frequency characteristics of VSG and energy storage capacity.An energy storage configuration method that meets the requirements of frequency variation characteristics is proposed.A mathematical model is established,and the Matlab/Simulink simulation software is used for modeling.The simulation results verify the relationship between the inertia coefficient,damping coefficient,and energy storage demand of the FVSG. 展开更多
关键词 Virtual synchronous machine inertia coefficient damping coefficient energy storage capacity
下载PDF
Electric Field Distribution of Soluble Salt Deposition on the Surface of Insulators in Railway Overhead Lines
16
作者 Sihua Wang Junjun Wang +1 位作者 Long Chen Lei Zhao 《Chinese Journal of Electrical Engineering》 CSCD 2022年第3期123-132,共10页
Different constituents of soluble salts have different effects on the insulation performance of insulators.To study the electric field distribution of soluble salt deposition on the surface of high-speed railway insul... Different constituents of soluble salts have different effects on the insulation performance of insulators.To study the electric field distribution of soluble salt deposition on the surface of high-speed railway insulators,a two-dimensional model of the cantilever insulator electrostatic field and constant-current field with soluble salt deposition is constructed.The simulation results indicate that the relative dielectric constant of dry pollution is the main factor that affects the electric field distribution on the surface of the insulator.The electric field intensity is arranged in the following order:CaSO_(4)>KNO_(3)>NaNO_(3)>K_(2)SO_(4)>NaCl>MgSO_(4),and the conductivity of each dirty liquid in the wet state becomes a key factor affecting the electric field distribution,which is specifically shown as sodium chloride>nitrate>sulfate.The simulation results are compared with existing test results to verify that they were correct.It is also found that the electric field intensity of the insulator with good hydrophobicity is slightly greater than that of the insulator without hydrophobicity.The results provide a theoretical basis for the classification of regional pollution levels and the testing of insulator contamination in the laboratory. 展开更多
关键词 Catenary insulator soluble salt composition electric field intensity electrostatic field constant-current field
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部