期刊文献+
共找到705篇文章
< 1 2 36 >
每页显示 20 50 100
Decentralized Optimal Control and Stabilization of Interconnected Systems With Asymmetric Information
1
作者 Na Wang Xiao Liang +1 位作者 Hongdan Li Xiao Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期698-707,共10页
The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control p... The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm. 展开更多
关键词 Asymmetric information decentralized control forwardbackward stochastic difference equations interconnected system stalibization
下载PDF
Prediction and Output Estimation of Pattern Moving in Non-Newtonian Mechanical Systems Based on Probability Density Evolution
2
作者 Cheng Han Zhengguang Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期515-536,共22页
A prediction framework based on the evolution of pattern motion probability density is proposed for the output prediction and estimation problem of non-Newtonian mechanical systems,assuming that the system satisfies t... A prediction framework based on the evolution of pattern motion probability density is proposed for the output prediction and estimation problem of non-Newtonian mechanical systems,assuming that the system satisfies the generalized Lipschitz condition.As a complex nonlinear system primarily governed by statistical laws rather than Newtonian mechanics,the output of non-Newtonian mechanics systems is difficult to describe through deterministic variables such as state variables,which poses difficulties in predicting and estimating the system’s output.In this article,the temporal variation of the system is described by constructing pattern category variables,which are non-deterministic variables.Since pattern category variables have statistical attributes but not operational attributes,operational attributes are assigned to them by posterior probability density,and a method for analyzing their motion laws using probability density evolution is proposed.Furthermore,a data-driven form of pattern motion probabilistic density evolution prediction method is designed by combining pseudo partial derivative(PPD),achieving prediction of the probability density satisfying the system’s output uncertainty.Based on this,the final prediction estimation of the system’s output value is realized by minimum variance unbiased estimation.Finally,a corresponding PPD estimation algorithm is designed using an extended state observer(ESO)to estimate the parameters to be estimated in the proposed prediction method.The effectiveness of the parameter estimation algorithm and prediction method is demonstrated through theoretical analysis,and the accuracy of the algorithm is verified by two numerical simulation examples. 展开更多
关键词 Non-newtonian mechanical systems prediction and estimation pattern moving probability density evolution pseudo partial derivative
下载PDF
Model Parameters Identification and Backstepping Control of Lower Limb Exoskeleton Based on Enhanced Whale Algorithm
3
作者 Yan Shi Jiange Kou +2 位作者 Zhenlei Chen Yixuan Wang Qing Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期100-114,共15页
Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of i... Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value. 展开更多
关键词 Parameter identification Enhanced whale optimization algorithm(EWOA) BACKSTEPPING Human-robot interaction Lower limb exoskeleton
下载PDF
Design and verification of an improved experimental platform for stray current in urban rail transit
4
作者 LI Yaning KANG Hong +3 位作者 WANG Ye LI Wenfei JIAO Meng ZHANG Wencai 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期379-386,共8页
With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improv... With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improved stray current experimental platform by replacing the simulated aqueous solution with a real soil environment and by calculating the transition resistance by measuring the soil resistivity,which makes up for the defects in the previous references.Firstly,the mathematical models of rail-drainage net and rail-drainage netground were established,and the analytical expressions of current and voltage of rail,drainage net and other structures were derived.In addition,the simulation model was built,and the mathematical analysis results were compared with the simulation results.Secondly,the accuracy of the improved stray current experimental platform was verified by comparing the measured and simulation results.Finally,based on the experimental results,the influence factors of stray current were analyzed.The relevant conclusions provide experimental data and theoretical reference for the study of stray current in urban rail transit. 展开更多
关键词 urban rail transit stray current experimental platform transition resistance soil resistivity
下载PDF
Enhanced UAV Pursuit-Evasion Using Boids Modelling:A Synergistic Integration of Bird Swarm Intelligence and DRL
5
作者 Weiqiang Jin Xingwu Tian +3 位作者 Bohang Shi Biao Zhao Haibin Duan Hao Wu 《Computers, Materials & Continua》 SCIE EI 2024年第9期3523-3553,共31页
TheUAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles(UAVs),which is pivotal in public safety applications,particularly in scenarios involving i... TheUAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles(UAVs),which is pivotal in public safety applications,particularly in scenarios involving intrusion monitoring and interception.To address the challenges of data acquisition,real-world deployment,and the limited intelligence of existing algorithms in UAV pursuit-evasion tasks,we propose an innovative swarm intelligencebased UAV pursuit-evasion control framework,namely“Boids Model-based DRL Approach for Pursuit and Escape”(Boids-PE),which synergizes the strengths of swarm intelligence from bio-inspired algorithms and deep reinforcement learning(DRL).The Boids model,which simulates collective behavior through three fundamental rules,separation,alignment,and cohesion,is adopted in our work.By integrating Boids model with the Apollonian Circles algorithm,significant improvements are achieved in capturing UAVs against simple evasion strategies.To further enhance decision-making precision,we incorporate a DRL algorithm to facilitate more accurate strategic planning.We also leverage self-play training to continuously optimize the performance of pursuit UAVs.During experimental evaluation,we meticulously designed both one-on-one and multi-to-one pursuit-evasion scenarios,customizing the state space,action space,and reward function models for each scenario.Extensive simulations,supported by the PyBullet physics engine,validate the effectiveness of our proposed method.The overall results demonstrate that Boids-PE significantly enhance the efficiency and reliability of UAV pursuit-evasion tasks,providing a practical and robust solution for the real-world application of UAV pursuit-evasion missions. 展开更多
关键词 UAV pursuit-evasion swarm intelligence algorithm Boids model deep reinforcement learning self-play training
下载PDF
Research on Detection of Food additives Based on Terahertz Spectroscopy and Analytic Hierarchy Process
6
作者 Miaoyu Zhao Fang Yan +1 位作者 Wenwen Li Yangshuo Liu 《Instrumentation》 2024年第1期30-37,共8页
Terahertz time-domain spectroscopy is a kind of far-infrared spectroscopy technology,and its spectrum reflects the internal properties of substances with rich physical and chemical information,so the use of terahertz ... Terahertz time-domain spectroscopy is a kind of far-infrared spectroscopy technology,and its spectrum reflects the internal properties of substances with rich physical and chemical information,so the use of terahertz waves can be used to qualitatively identify food additives containing nitrogen elements.Analytic hierarchy process(AHP)was originally used to solve evaluation-type problems,and this paper introduces it into the field of terahertz spectral qualitative analysis,proposes a terahertz time-domain spectral qualitative identification method combined with analytic hierarchy process,and verifies the feasibility of the method by taking four common food additives(xylitol,L-alanine,sorbic acid,and benzoic acid)and two illegal additives(melamine,and Sudan Red No.I)as the objects of study.Firstly,the collected terahertz time-domain spectral data were pre-processed and transformed into a data set consisting of peaks,peak positions,peak numbers and overall trends;then,the data were divided into comparison and test sets,and a qualitative additive identification model incorporating analytic hierarchy process was constructed and parameter optimisation was performed.The results showed that the qualitative identification accuracies of additives based on single factors,i.e.,overall trend,peak value,peak position,and peak number,were 80.23%,70.93%,67.44%,and 40.70%,respectively,whereas the identification accuracy of the analytic hierarchy process qualitative identification method based on multi-factors could be improved to 92.44%.In addition,the fuzzy characterisation of the absorption spectrum data was binarised in the data pre-processing stage and used as the base data for the overall trend,and the recognition accuracy was improved to 94.19%by combining the fuzzy characterisation method of such data with the hierarchical analysis qualitative recognition model.The results show that it is feasible to use terahertz technology to identify different varieties of additives,and this paper constructs a hierarchical analytical qualitative model with better effect,which provides a new means for food additives detection,and the method is simple in steps,with a small demand for samples,which is suitable for the rapid detection of small samples. 展开更多
关键词 terahertz time-domain spectroscopy analytic hierarchy process qualitative identification food additives
下载PDF
Few-shot working condition recognition of a sucker-rod pumping system based on a 4-dimensional time-frequency signature and meta-learning convolutional shrinkage neural network 被引量:1
7
作者 Yun-Peng He Chuan-Zhi Zang +4 位作者 Peng Zeng Ming-Xin Wang Qing-Wei Dong Guang-Xi Wan Xiao-Ting Dong 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1142-1154,共13页
The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le... The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions. 展开更多
关键词 Few-shot learning Indicator diagram META-LEARNING Soft thresholding Sucker-rod pumping system Time–frequency signature Working condition recognition
下载PDF
Predicting Reliability and Remaining Useful Life of Rolling Bearings Based on Optimized Neural Networks 被引量:1
8
作者 Tiantian Liang Runze Wang +2 位作者 Xuxiu Zhang Yingdong Wang Jianxiong Yang 《Structural Durability & Health Monitoring》 EI 2023年第5期433-455,共23页
In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-do... In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-domain features are extracted to construct the feature dataset because the single-domain features are difficult to characterize the performance degeneration of the rolling bearing.To provide covariates for reliability assessment,a kernel principal component analysis is used to reduce the dimensionality of the features.A Weibull distribution proportional hazard model(WPHM)is used for the reliability assessment of rolling bearing,and a beluga whale optimization(BWO)algorithm is combined with maximum likelihood estimation(MLE)to improve the estimation accuracy of the model parameters of the WPHM,which provides the data basis for predicting reliability.Considering the possible gradient explosion by training the rolling bearing lifetime data and the difficulties in selecting the key network parameters,an optimized LSTM network called the improved whale optimization algorithm-based long short-term memory(IWOA-LSTM)network is proposed.As IWOA better jumps out of the local optimization,the fitting and prediction accuracies of the network are correspondingly improved.The experimental results show that compared with the whale optimization algorithm-based long short-term memory(WOA-LSTM)network,the reliability prediction and RUL prediction accuracies of the rolling bearing are improved by the proposed IWOA-LSTM network. 展开更多
关键词 Rolling bearing prediction feature extraction long short-term memory network improve whale optimization algorithm
下载PDF
Research on Virtual DC Generator-Based Control Strategy of DCMicrogrid with Photovoltaic and Energy Storage 被引量:1
9
作者 Feng Zhao Chengrui Xiao +1 位作者 Xiaoqiang Chen Ying Wang 《Energy Engineering》 EI 2023年第6期1353-1370,共18页
With the penetration of a large number of photovoltaic power generation units and power electronic converters,the DC microgrid shows low inertia characteristics,which might affect the stable operation of the microgrid... With the penetration of a large number of photovoltaic power generation units and power electronic converters,the DC microgrid shows low inertia characteristics,which might affect the stable operation of the microgrid in extreme cases.In order to enhance the“flexible features”of the interface converter connected to the DC bus,a control strategy of DCmicrogrid with photovoltaic and energy storage based on the virtual DC generator(VDCG)is proposed in this paper.The interface converters of the photovoltaic power generation system and the energy storage system simulates the inertia and damping characteristics of the DC generator to improve the stability of the DC bus voltage.The impedance ratio of DC microgrid was obtained by establishing the small-signal model of photovoltaic power generation system and energy storage system,and the Nyquist curves was applied to analyze the small-signal stability of the system.Finally,the simulation results were verified with MATLAB/Simulink.The results show that the proposed control strategy can slow down the fluctuation of bus voltage under the conditions of photovoltaic power fluctuation and load mutation,thus enhancing the system stability. 展开更多
关键词 DC microgrid with photovoltaic and energy storage virtual DC generator the low inertia characteristics smallsignal model impedance ratio
下载PDF
An Overview of Finite/Fixed-Time Control and Its Application in Engineering Systems 被引量:16
10
作者 Yang Liu Hongyi Li +2 位作者 Zongyu Zuo Xiaodi Li Renquan Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第12期2106-2120,共15页
The finite/fixed-time stabilization and tracking control is currently a hot field in various systems since the faster convergence can be obtained. By contrast to the asymptotic stability,the finite-time stability poss... The finite/fixed-time stabilization and tracking control is currently a hot field in various systems since the faster convergence can be obtained. By contrast to the asymptotic stability,the finite-time stability possesses the better control performance and disturbance rejection property. Different from the finite-time stability, the fixed-time stability has a faster convergence speed and the upper bound of the settling time can be estimated. Moreover, the convergent time does not rely on the initial information.This work aims at presenting an overview of the finite/fixed-time stabilization and tracking control and its applications in engineering systems. Firstly, several fundamental definitions on the finite/fixed-time stability are recalled. Then, the research results on the finite/fixed-time stabilization and tracking control are reviewed in detail and categorized via diverse input signal structures and engineering applications. Finally, some challenging problems needed to be solved are presented. 展开更多
关键词 Adding a power integrator finite/fixed-time control and application homogeneous theory sliding mode control
下载PDF
Robust Distributed Model Predictive Control for Formation Tracking of Nonholonomic Vehicles 被引量:1
11
作者 Zhigang Luo Bing Zhu +1 位作者 Jianying Zheng Zewei Zheng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期560-562,共3页
Dear Editor,This letter proposes a robust distributed model predictive control(MPC) strategy for formation tracking of a group of wheeled vehicles subject to constraints and disturbances. Formation control has attract... Dear Editor,This letter proposes a robust distributed model predictive control(MPC) strategy for formation tracking of a group of wheeled vehicles subject to constraints and disturbances. Formation control has attracted significant interest because of its applications in searching and exploration [1], [2]. 展开更多
关键词 LETTER CONSTRAINTS SEARCHING
下载PDF
Belief Propagation List Decoding for Polar Codes:Performance Analysis and Software Implementation on GPU
12
作者 Zhanxian Liu Wei Li +3 位作者 Lei Sun Wei Li Jianquan Wang Haijun Zhang 《China Communications》 SCIE CSCD 2023年第9期115-126,共12页
Belief propagation(BP)decoding outputs soft information and can be naturally used in iterative receivers.BP list(BPL)decoding provides comparable error-correction performance to the successive cancellation list(SCL)de... Belief propagation(BP)decoding outputs soft information and can be naturally used in iterative receivers.BP list(BPL)decoding provides comparable error-correction performance to the successive cancellation list(SCL)decoding.In this paper,we firstly introduce an enhanced code construction scheme for BPL decoding to improve its errorcorrection capability.Then,a GPU-based BPL decoder with adoption of the new code construction is presented.Finally,the proposed BPL decoder is tested on NVIDIA RTX3070 and GTX1060.Experimental results show that the presented BPL decoder with early termination criterion achieves above 1 Gbps throughput on RTX3070 for the code(1024,512)with 32 lists under good channel conditions. 展开更多
关键词 polar code belief propagation SIMT list decoding GPU
下载PDF
Research on Energy Efficiency Characteristics of Mining Shovel Hoisting and Slewing System Driven by Hydraulic-Electric Hybrid System
13
作者 Xiangyu Wang Lei Ge +1 位作者 Yunhua Li Long Quan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期197-211,共15页
Mining shovel is a crucial piece of equipment for high-efficiency production in open-pit mining and stands as one of the largest energy consumption sources in mining.However,substantial energy waste occurs during the ... Mining shovel is a crucial piece of equipment for high-efficiency production in open-pit mining and stands as one of the largest energy consumption sources in mining.However,substantial energy waste occurs during the descent of the hoisting system or the deceleration of the slewing platform.To reduce the energy loss,an innovative hydrau-lic-electric hybrid drive system is proposed,in which a hydraulic pump/motor connected with an accumulator is added to assist the electric motor to drive the hoisting system or slewing platform,recycling kinetic and potential energy.The utilization of the kinetic and potential energy reduces the energy loss and installed power of the min-ing shovel.Meanwhile,the reliability of the mining shovel pure electric drive system also can be increased.In this paper,the hydraulic-electric hybrid driving principle is introduced,a small-scale testbed is set up to verify the feasibil-ity of the system,and a co-simulation model of the proposed system is established to clarify the system operation and energy characteristics.The test and simulation results show that,by adopting the proposed system,compared with the traditional purely electric driving system,the peak power and energy consumption of the hoisting electric motor are reduced by 36.7%and 29.7%,respectively.Similarly,the slewing electric motor experiences a significant decrease in peak power by 86.9%and a reduction in energy consumption by 59.4%.The proposed system expands the application area of the hydraulic electric hybrid drive system and provides a reference for its application in over-sized and super heavy equipment. 展开更多
关键词 Mining shovel Hoisting and slewing system Hydraulic-electric hybrid drive Energy saving
下载PDF
Recognition of Hybrid PQ Disturbances Based on Multi-Resolution S-Transform and Decision Tree
14
作者 Feng Zhao Di Liao +1 位作者 Xiaoqiang Chen Ying Wang 《Energy Engineering》 EI 2023年第5期1133-1148,共16页
Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on mult... Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on multiresolution S-transform and decision tree was proposed.Firstly,according to IEEE standard,the signal models of seven single power quality disturbances and 17 combined power quality disturbances are given,and the disturbance waveform samples are generated in batches.Then,in order to improve the recognition accuracy,the adjustment factor is introduced to obtain the controllable time-frequency resolution through multi-resolution S-transform time-frequency domain analysis.On this basis,five disturbance time-frequency domain features are extracted,which quantitatively reflect the characteristics of the analyzed power quality disturbance signal,which is less than the traditional method based on S-transform.Finally,three classifiers such as K-nearest neighbor,support vector machine and decision tree algorithm are used to effectively complete the identification of power quality composite disturbances.Simulation results showthat the classification accuracy of decision tree algorithmis higher than that of K-nearest neighbor and support vector machine.Finally,the proposed method is compared with other commonly used recognition algorithms.Experimental results show that the proposedmethod is effective in terms of detection accuracy,especially for combined PQ interference. 展开更多
关键词 Hybrid power quality disturbances disturbances recognition multi-resolution S-transform decision tree
下载PDF
Regenerative Braking Energy Recovery System of Metro Train Based on Dual-Mode Power Management
15
作者 Feng Zhao Xiaotong Zhu +1 位作者 Xiaoqiang Chen Ying Wang 《Energy Engineering》 EI 2024年第9期2585-2601,共17页
In order to fully utilize the regenerative braking energy of metro trains and stabilize the metro DC traction busbar voltage,a hybrid regenerative braking energy recovery system with a dual-mode power management strat... In order to fully utilize the regenerative braking energy of metro trains and stabilize the metro DC traction busbar voltage,a hybrid regenerative braking energy recovery system with a dual-mode power management strategy is proposed.Firstly,the construction of the hybrid regenerative braking energy recovery system is explained.Then,based on the power demand of low-voltage load in metro stations,a dual-mode power management strategy is proposed to allocate the reference power of each system according to the different working conditions,and the control methods of each system are set.Finally,the correctness and effectiveness of the dual-mode strategy are verified through simulation,and the proposed braking energy utilization scheme is compared with other singleform utilization schemes.The results illustrate that the hybrid system with the dual-mode strategy can effectively recycle the regenerative braking energy of metro train and inhibit the busbar voltage fluctuation;the proposed braking energy utilization scheme has certain advantages on energy recovery and DC bus voltage stabilization compared with other single-form schemes;the proposed power management strategy can correctly allocate the reference power of each system with a lower construction cost. 展开更多
关键词 Metro train regenerative braking energy energy feed-back system energy storage system power management
下载PDF
Multi-circular formation control with reinforced transient profiles for nonholonomic vehicles:A path-following framework
16
作者 Jintao Zhang Xingling Shao +1 位作者 Wendong Zhang Zongyu Zuo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期278-287,共10页
This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the fe... This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the feature of spatial-temporal decoupling is devised for a group of vehicles guided by a virtual leader evolving along an implicit path,which allows for a circumnavigation on multiple circles with an anticipant angular spacing.In addition,notice that it typically imposes a stringent time constraint on time-sensitive enclosing scenarios,hence an improved prescribed performance control(IPPC)using novel tighter behavior boundaries is presented to enhance transient capabilities with an ensured appointed-time convergence free from any overshoots.The significant merits are that coordinated circumnavigation along different circles can be realized via executing geometric and dynamic assignments independently with modified transient profiles.Furthermore,all variables existing in the entire system are analyzed to be convergent.Simulation and experimental results are provided to validate the utility of suggested solution. 展开更多
关键词 Multi-circular formation Reinforced transient profiles Nonholonomic vehicles Path following
下载PDF
Power Quality Disturbance Identification Basing on Adaptive Kalman Filter andMulti-Scale Channel Attention Fusion Convolutional Network
17
作者 Feng Zhao Guangdi Liu +1 位作者 Xiaoqiang Chen Ying Wang 《Energy Engineering》 EI 2024年第7期1865-1882,共18页
In light of the prevailing issue that the existing convolutional neural network(CNN)power quality disturbance identification method can only extract single-scale features,which leads to a lack of feature information a... In light of the prevailing issue that the existing convolutional neural network(CNN)power quality disturbance identification method can only extract single-scale features,which leads to a lack of feature information and weak anti-noise performance,a new approach for identifying power quality disturbances based on an adaptive Kalman filter(KF)and multi-scale channel attention(MS-CAM)fused convolutional neural network is suggested.Single and composite-disruption signals are generated through simulation.The adaptive maximum likelihood Kalman filter is employed for noise reduction in the initial disturbance signal,and subsequent integration of multi-scale features into the conventional CNN architecture is conducted.The multi-scale features of the signal are captured by convolution kernels of different sizes so that the model can obtain diverse feature expressions.The attention mechanism(ATT)is introduced to adaptively allocate the extracted features,and the features are fused and selected to obtain the new main features.The Softmax classifier is employed for the classification of power quality disturbances.Finally,by comparing the recognition accuracy of the convolutional neural network(CNN),the model using the attention mechanism,the bidirectional long-term and short-term memory network(MS-Bi-LSTM),and the multi-scale convolutional neural network(MSCNN)with the attention mechanism with the proposed method.The simulation results demonstrate that the proposed method is higher than CNN,MS-Bi-LSTM,and MSCNN,and the overall recognition rate exceeds 99%,and the proposed method has significant classification accuracy and robust classification performance.This achievement provides a new perspective for further exploration in the field of power quality disturbance classification. 展开更多
关键词 Power quality disturbance kalman filtering convolutional neural network attention mechanism
下载PDF
Prescribed Performance Evolution Control for Quadrotor Autonomous Shipboard Landing
18
作者 Yang Yuan Haibin Duan Zhigang Zeng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第5期1151-1162,共12页
The shipboard landing problem for a quadrotor is addressed in this paper,where the ship trajectory tracking control issue is transformed into a stabilization control issue by building a relative position model.To guar... The shipboard landing problem for a quadrotor is addressed in this paper,where the ship trajectory tracking control issue is transformed into a stabilization control issue by building a relative position model.To guarantee both transient performance and steady-state landing error,a prescribed performance evolution control(PPEC)method is developed for the relative position control.In addition,a novel compensation system is proposed to expand the performance boundaries when the input saturation occurs and the error exceeds the predefined threshold.Considering the wind and wave on the relative position model,an adaptive sliding mode observer(ASMO)is designed for the disturbance with unknown upper bound.Based on the dynamic surface control framework,a shipboard landing controller integrating PPEC and ASMO is established for the quadrotor,and the relative position control error is guaranteed to be uniformly ultimately bounded.Simulation results have verified the feasibility and effectiveness of the proposed shipboard landing control scheme. 展开更多
关键词 error integrating STABILIZATION
下载PDF
Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation
19
作者 Caixia Tao Shize Yang Taiguo Li 《Energy Engineering》 EI 2024年第1期187-201,共15页
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p... With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability. 展开更多
关键词 Reconfiguration of distribution network distributed generation particle swarm optimization algorithm simulated annealing algorithm active network loss
下载PDF
Research on Carbon Emission for Preventive Maintenance of Wind Turbine Gearbox Based on Stochastic Differential Equation
20
作者 Hongsheng Su Lixia Dong +1 位作者 Xiaoying Yu Kai Liu 《Energy Engineering》 EI 2024年第4期973-986,共14页
Time based maintenance(TBM)and condition based maintenance(CBM)are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes,however,these maintenance strategies do not take ... Time based maintenance(TBM)and condition based maintenance(CBM)are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes,however,these maintenance strategies do not take into account environmental benefits during full life cycle such as carbon emissions issues.Hence,this article proposes a carbon emissions computing model for preventive maintenance activities of wind turbine gearboxes to solve the issue.Based on the change of the gearbox state during operation and the influence of external random factors on the gearbox state,a stochastic differential equation model(SDE)and corresponding carbon emission model are established,wherein SDE is applied to model the evolution of the device state,whereas carbon emission is used to implement carbon emissions computing.The simulation results indicate that the proposed preventive maintenance cannot ensure reliable operation of wind turbine gearboxes but reduce carbon emissions during their lifespan.Compared with TBM,CBM minimizes unit carbon emissions without influencing reliable operation,making it an effective maintenance method. 展开更多
关键词 Stochastic differential equation(SDE) condition-based maintenance(CBM) carbon emissions
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部