The East African Orogen involves a collage of Proterozoic microcontinents and arc terranes that became wedged between older cratonic blocks during the assembly of Gondwana.The Ediacaran-Cambrian Ambalavao and Maevaran...The East African Orogen involves a collage of Proterozoic microcontinents and arc terranes that became wedged between older cratonic blocks during the assembly of Gondwana.The Ediacaran-Cambrian Ambalavao and Maevarano Suites in Madagascar were emplaced during the waning orogenic stages and consist of weakly deformed to undeformed plutonic rocks and dykes of mainly porphyritic granite but also gabbro,diorite and charnockite.U-Pb geochronological data date emplacement of the Ambalavao Suite to between ca.580 Ma and 540 Ma and the Maevarano Suite to between ca.537 Ma and522 Ma.Major and trace element concentrations are consistent with emplacement in a syn-to postcollisional tectonic setting as A-type(anorogenic) suites.Oxygen(δ^(18)O of 5.27‰-7.45‰) and hafnium(ε(Hf)(t) of-27.8 to-12.3) isotopic data from plutons in the Itremo and Antananarivo Domains are consistent with incorporation of an ancient crustal source.More primitive δ^(18)O(5.27‰-5.32‰) andε(Hf)(t)(+0.0 to+0.2) isotopic values recorded in samples collected from the Ikalamavony Domain demonstrate the isotopic variation of basement sources present in the Malagasy crust.The Hf isotopic composition of Malagasy zircon are unlike more juvenile Ediacaran-Cambrian zircon sou rces elsewhere in the East African Orogen and,as such,Madagascar represents a distinct and identifiable detrital zircon source region in Phanerozoic sedimentary provenance studies.Taken together,these data indicate that high-T crustal anatexis,crustal assimilation and interaction of crustal material with mantle-derived melts were the processes operating during magma emplacement.This magmatism was coeval with polyphase deformation throughout Madagascar during the amalgamation of Gondwana and magmatism is interpreted to reflect lithospheric delamination of an extensive orogenic plateau.展开更多
The Southern Irumide Belt(SIB)is an orogenic belt consisting of a number of lithologically varied Mesoproterozoic and Neoproterozoic terranes that were thrust upon each other.The belt lies along the southwest margin o...The Southern Irumide Belt(SIB)is an orogenic belt consisting of a number of lithologically varied Mesoproterozoic and Neoproterozoic terranes that were thrust upon each other.The belt lies along the southwest margin of the Archaean to Proterozoic Congo Craton,and bears a Neoproterozoic tectonothermal overprint relating to the Neoproterozoic-Cambrian collision between the Congo and Kalahari cratons.It preserves a record of about 500 million years of plate interaction along this part of the Congo margin.Detrital zircon samples from the SIB were analysed for U-Pb and Lu-Hf isotopes,as well as trace element compositions.These data are used to constrain sediment-source relationships between SIB terranes and other Gondwanan terranes such as the local Congo Craton and Irumide belt and wider afield to Madagascar(Azania)and India.These correlations are then used to interpret the Mesoproterozoic to Neoproterozoic affinity of the rocks and evolution of the region.Detrital zircon samples from the Chewore-Rufunsa and Kacholola(previously referred to as Luangwa-Nyimba)terranes of the SIB yield zircon U-Pb age populations and evolvedε(Hf)(t)values that are similar to the Muva Supergroup found throughout eastern Zambia,primarily correlating with Ubendian-Usagaran(ca.2.05-1.80 Ga)phase magmatism and a cryptic basement terrane that has been suggested to underlie the Bangweulu Block and Irumide Belt.These data suggest that the SIB was depositionally connected to the Congo Craton throughout the Mesoproterozoic.The more eastern Nyimba-Sinda terrane of the SIB(previously referred to as Petauke-Sinda terrane)records detrital zircon ages andε(Hf)(t)values that correlate with ca.1.1-1.0 Ga magmatism exposed elsewhere in the SIB and Irumide Belt.We ascribe this difference in age populations to the polyphase development of the province,where the sedimentary and volcanic rocks of the Nyimba-Sinda terrane accumulated in extensional basins that developed in the Neoproterozoic.Such deposition would have occurred following late-Mesoproterozoic magmatism that is widespread throughout both the Irumide and Southern Irumide Belts,presently considered to have occurred in response to collision between a possible microcontinental mass and the Irumide Belt.This interpretation implies a multi-staged evolution of the ocean south of the Congo Craton during the mid-Mesoproterozoic to late-Neoproterozoic,which ultimately closed during collision between the Congo and Kalahari cratons.展开更多
Pumping ventilation(PV),a special single-sided ventilation(SSV),has been certified as an effective strategy to improve the air exchange rate of SSV.However,most studies targeted on the single space,and few studies hav...Pumping ventilation(PV),a special single-sided ventilation(SSV),has been certified as an effective strategy to improve the air exchange rate of SSV.However,most studies targeted on the single space,and few studies have been focused on the effect of internal partitioning on PV.This paper aims to evaluate the ventilation performance of PV influenced by different configurations of internal partitioning.Computational fluid dynamics(CFD)simulation was used to predict the flow fields and ventilation rates.The width(w/H),height(h/H)and location(d/H)are the three main internal partition parameters considered in this study.The simulation results showed that the total,mean and fluctuating ventilation rates all decrease with wider internal partitions.The normalized total ventilation rate decreases by 7.6%when w/H is increased from 50%to 75%.However,the reduction rate is only 0.23%between w/H=0 and 25%,and only 0.61%between w/H=25%and 50%.The ventilation rate is hardly reduced by increasing the partition width when w/H<50%,whereas greatly reduced by wider partition for w/H>50%.Increasing the partition height will reduce the mean ventilation rate but promote the fluctuating and total ventilation rate in some cases.An increase of total ventilation rate by 1.4%is observed from h/H=50%to 75%.The ventilation rate is larger when the internal partition is attached to the leeward or windward wall.The total,mean and fluctuating ventilation rates for d/H=50%are relatively higher than d/H=0 by 1.5%,3.1%and 0.8%,respectively.Hence the internal partition should be mounted attached to the windward wall so as to obtain the greatest pumping ventilation rate.The periodicity of pumping flow oscillation and pumping frequency are independent of the partition configurations.The peak power of pumping flow is the lowest for the widest internal partition and is negatively affected by the partition height,but it generally has a positive correlation with the distance between the partition and leeward wall.Present research will help to understand pumping ventilation mechanism in real buildings with internal partitioning and provide theoretical basis for developing unsteady natural ventilation technology in low-carbon buildings.展开更多
The middle-upper Cretaceous Ceduna River system traversed continental Australia from the NE coast to the centre of the southern coast. At its mouth, it formed a vast delta system that is similar in scale to the Niger ...The middle-upper Cretaceous Ceduna River system traversed continental Australia from the NE coast to the centre of the southern coast. At its mouth, it formed a vast delta system that is similar in scale to the Niger delta of West Africa. The delta system is composed of two main lobes that represent different phases of delta construction. A recent hypothesis has challenged the traditional idea that both lobes of the delta were derived from a transcontinental river system by suggesting that the upper lobe (Santonian -Maastrichtian) is instead derived from a restricted catchment within southern Australia. Hf isotopic data presented here fingerprint the original source of the upper delta lobe zircons to NE Australia, with data comparing well with similar U-Pb and Lu-Hf isotopic data from the Lachlan Orogen, the New England Orogen, the eastern Musgraves Province and the northern Flinders Ranges. These data do not preclude a model where the lobe is derived from recycled Eromanga Basin sediments during a phase of late Cretaceous inland Australian uplift, but when coupled with reconnaissance low-temperature thermochronometry from the region of the Ceduna River course indicating widespread Triassic-Jurassic exhumation, and comparisons with detrital zircon data from the Winton Formation upstream of any proposed uplift, we suggest that both lobes of the Ceduna Delta are likely to be derived from a transcontinental Ceduna River.展开更多
This work investigates coag-flocculation optimization treatment of alum-brewery effluent system via response surface methodology (RSM). To minimize suspended and dissolved particles (SDP), experiments were carried out...This work investigates coag-flocculation optimization treatment of alum-brewery effluent system via response surface methodology (RSM). To minimize suspended and dissolved particles (SDP), experiments were carried out using nephelometric jar test and 23-factorial design with three star-points, six-center-points and two replications. A central composite design, which is the standard design of RSM, was used to evaluate the effects and interactions of three major factors (coagulation pH, coagulant dosage, settling time) on the treatment efficiency. Multivariable quadratic model developed for the response studied indicates the optimum conditions to be 9, 500mg/l and 20minutes for coagulation pH, coagulant dosage and settling time, respectively. At optimum, the SDP was reduced from 10831.490mg/l to 801.451mg/l, representing 92.601% removal efficiency. RSM has demonstrated to be appropriate approach for the optimization of the coag-flocculation process by statistical evaluation.展开更多
Current demand for housing worldwide has reached unprecedented levels due to factors such as human population growth, natural disasters and conflict. This is felt no more so than in developing countries which have exp...Current demand for housing worldwide has reached unprecedented levels due to factors such as human population growth, natural disasters and conflict. This is felt no more so than in developing countries which have experienced disproportionate levels of demand due to their innate vulnerability. Many current approaches to housing delivery in developing countries continue to utilize inappropriate construction methods and implementation procedures that are often problematic and unsustainable. As such affordability and sustainability are now vital considerations in the international development debate for housing the poor in developing countries in order to meet the long term sustainable development goals and needs of housing inhabitants. This paper utilized an extensive scoping study to examine the various facets impacting on design decision making relative to sustainable and affordable housing delivery in developing country contexts. Aspects of affordability, sustainability, design decision making, appropriate technology use, cultural awareness, as well as current barriers to affordable and sustainable construction in developing countries are examined in detail. Results highlighted the capability of indigenous knowledge, skills and materials as well as selected appropriate technology transfer and cultural awareness by foreign bodies can be utilized in innovative ways in addressing current housing needs in many developing country contexts.展开更多
基金output of ARC Future Fellowship grant FT120100340
文摘The East African Orogen involves a collage of Proterozoic microcontinents and arc terranes that became wedged between older cratonic blocks during the assembly of Gondwana.The Ediacaran-Cambrian Ambalavao and Maevarano Suites in Madagascar were emplaced during the waning orogenic stages and consist of weakly deformed to undeformed plutonic rocks and dykes of mainly porphyritic granite but also gabbro,diorite and charnockite.U-Pb geochronological data date emplacement of the Ambalavao Suite to between ca.580 Ma and 540 Ma and the Maevarano Suite to between ca.537 Ma and522 Ma.Major and trace element concentrations are consistent with emplacement in a syn-to postcollisional tectonic setting as A-type(anorogenic) suites.Oxygen(δ^(18)O of 5.27‰-7.45‰) and hafnium(ε(Hf)(t) of-27.8 to-12.3) isotopic data from plutons in the Itremo and Antananarivo Domains are consistent with incorporation of an ancient crustal source.More primitive δ^(18)O(5.27‰-5.32‰) andε(Hf)(t)(+0.0 to+0.2) isotopic values recorded in samples collected from the Ikalamavony Domain demonstrate the isotopic variation of basement sources present in the Malagasy crust.The Hf isotopic composition of Malagasy zircon are unlike more juvenile Ediacaran-Cambrian zircon sou rces elsewhere in the East African Orogen and,as such,Madagascar represents a distinct and identifiable detrital zircon source region in Phanerozoic sedimentary provenance studies.Taken together,these data indicate that high-T crustal anatexis,crustal assimilation and interaction of crustal material with mantle-derived melts were the processes operating during magma emplacement.This magmatism was coeval with polyphase deformation throughout Madagascar during the amalgamation of Gondwana and magmatism is interpreted to reflect lithospheric delamination of an extensive orogenic plateau.
基金funded by Australian Research Council Future Fellowship#FT120100340 to A.Collinssupported by a Research Training Program scholarship
文摘The Southern Irumide Belt(SIB)is an orogenic belt consisting of a number of lithologically varied Mesoproterozoic and Neoproterozoic terranes that were thrust upon each other.The belt lies along the southwest margin of the Archaean to Proterozoic Congo Craton,and bears a Neoproterozoic tectonothermal overprint relating to the Neoproterozoic-Cambrian collision between the Congo and Kalahari cratons.It preserves a record of about 500 million years of plate interaction along this part of the Congo margin.Detrital zircon samples from the SIB were analysed for U-Pb and Lu-Hf isotopes,as well as trace element compositions.These data are used to constrain sediment-source relationships between SIB terranes and other Gondwanan terranes such as the local Congo Craton and Irumide belt and wider afield to Madagascar(Azania)and India.These correlations are then used to interpret the Mesoproterozoic to Neoproterozoic affinity of the rocks and evolution of the region.Detrital zircon samples from the Chewore-Rufunsa and Kacholola(previously referred to as Luangwa-Nyimba)terranes of the SIB yield zircon U-Pb age populations and evolvedε(Hf)(t)values that are similar to the Muva Supergroup found throughout eastern Zambia,primarily correlating with Ubendian-Usagaran(ca.2.05-1.80 Ga)phase magmatism and a cryptic basement terrane that has been suggested to underlie the Bangweulu Block and Irumide Belt.These data suggest that the SIB was depositionally connected to the Congo Craton throughout the Mesoproterozoic.The more eastern Nyimba-Sinda terrane of the SIB(previously referred to as Petauke-Sinda terrane)records detrital zircon ages andε(Hf)(t)values that correlate with ca.1.1-1.0 Ga magmatism exposed elsewhere in the SIB and Irumide Belt.We ascribe this difference in age populations to the polyphase development of the province,where the sedimentary and volcanic rocks of the Nyimba-Sinda terrane accumulated in extensional basins that developed in the Neoproterozoic.Such deposition would have occurred following late-Mesoproterozoic magmatism that is widespread throughout both the Irumide and Southern Irumide Belts,presently considered to have occurred in response to collision between a possible microcontinental mass and the Irumide Belt.This interpretation implies a multi-staged evolution of the ocean south of the Congo Craton during the mid-Mesoproterozoic to late-Neoproterozoic,which ultimately closed during collision between the Congo and Kalahari cratons.
基金Authors would gratefully acknowledge the financial supports of the Natural Science Foundation of the Anhui Higher Education Institutions of China(2022AH050307)the Opening Fund of State Key Laboratory of Green Building in Western China(LSKF202312)+3 种基金the National Key Research and Development Program of the Ministry of Science and Technology of China(No.2022YFC3801601-02,Wuhan University)the Science Foundation(Meteorology)Innovation Development Joint Fund Key Project of Hubei Province(No.2023M15,Wuhan University)the Foreign Aid Project for High-Level Cooperation and Exchange Activities of the Ministry of Science and Technology(No.202213,Wuhan University)the Natural Science Foundation of China(No.51778504,No.U1867221,Wuhan University).
文摘Pumping ventilation(PV),a special single-sided ventilation(SSV),has been certified as an effective strategy to improve the air exchange rate of SSV.However,most studies targeted on the single space,and few studies have been focused on the effect of internal partitioning on PV.This paper aims to evaluate the ventilation performance of PV influenced by different configurations of internal partitioning.Computational fluid dynamics(CFD)simulation was used to predict the flow fields and ventilation rates.The width(w/H),height(h/H)and location(d/H)are the three main internal partition parameters considered in this study.The simulation results showed that the total,mean and fluctuating ventilation rates all decrease with wider internal partitions.The normalized total ventilation rate decreases by 7.6%when w/H is increased from 50%to 75%.However,the reduction rate is only 0.23%between w/H=0 and 25%,and only 0.61%between w/H=25%and 50%.The ventilation rate is hardly reduced by increasing the partition width when w/H<50%,whereas greatly reduced by wider partition for w/H>50%.Increasing the partition height will reduce the mean ventilation rate but promote the fluctuating and total ventilation rate in some cases.An increase of total ventilation rate by 1.4%is observed from h/H=50%to 75%.The ventilation rate is larger when the internal partition is attached to the leeward or windward wall.The total,mean and fluctuating ventilation rates for d/H=50%are relatively higher than d/H=0 by 1.5%,3.1%and 0.8%,respectively.Hence the internal partition should be mounted attached to the windward wall so as to obtain the greatest pumping ventilation rate.The periodicity of pumping flow oscillation and pumping frequency are independent of the partition configurations.The peak power of pumping flow is the lowest for the widest internal partition and is negatively affected by the partition height,but it generally has a positive correlation with the distance between the partition and leeward wall.Present research will help to understand pumping ventilation mechanism in real buildings with internal partitioning and provide theoretical basis for developing unsteady natural ventilation technology in low-carbon buildings.
基金part of an Honours project at University of Adelaide,in part funded by the Geological Survey of South AustraliaARC Future Fellowship grant FT120100340IGCP projects #628 and #648
文摘The middle-upper Cretaceous Ceduna River system traversed continental Australia from the NE coast to the centre of the southern coast. At its mouth, it formed a vast delta system that is similar in scale to the Niger delta of West Africa. The delta system is composed of two main lobes that represent different phases of delta construction. A recent hypothesis has challenged the traditional idea that both lobes of the delta were derived from a transcontinental river system by suggesting that the upper lobe (Santonian -Maastrichtian) is instead derived from a restricted catchment within southern Australia. Hf isotopic data presented here fingerprint the original source of the upper delta lobe zircons to NE Australia, with data comparing well with similar U-Pb and Lu-Hf isotopic data from the Lachlan Orogen, the New England Orogen, the eastern Musgraves Province and the northern Flinders Ranges. These data do not preclude a model where the lobe is derived from recycled Eromanga Basin sediments during a phase of late Cretaceous inland Australian uplift, but when coupled with reconnaissance low-temperature thermochronometry from the region of the Ceduna River course indicating widespread Triassic-Jurassic exhumation, and comparisons with detrital zircon data from the Winton Formation upstream of any proposed uplift, we suggest that both lobes of the Ceduna Delta are likely to be derived from a transcontinental Ceduna River.
文摘This work investigates coag-flocculation optimization treatment of alum-brewery effluent system via response surface methodology (RSM). To minimize suspended and dissolved particles (SDP), experiments were carried out using nephelometric jar test and 23-factorial design with three star-points, six-center-points and two replications. A central composite design, which is the standard design of RSM, was used to evaluate the effects and interactions of three major factors (coagulation pH, coagulant dosage, settling time) on the treatment efficiency. Multivariable quadratic model developed for the response studied indicates the optimum conditions to be 9, 500mg/l and 20minutes for coagulation pH, coagulant dosage and settling time, respectively. At optimum, the SDP was reduced from 10831.490mg/l to 801.451mg/l, representing 92.601% removal efficiency. RSM has demonstrated to be appropriate approach for the optimization of the coag-flocculation process by statistical evaluation.
文摘Current demand for housing worldwide has reached unprecedented levels due to factors such as human population growth, natural disasters and conflict. This is felt no more so than in developing countries which have experienced disproportionate levels of demand due to their innate vulnerability. Many current approaches to housing delivery in developing countries continue to utilize inappropriate construction methods and implementation procedures that are often problematic and unsustainable. As such affordability and sustainability are now vital considerations in the international development debate for housing the poor in developing countries in order to meet the long term sustainable development goals and needs of housing inhabitants. This paper utilized an extensive scoping study to examine the various facets impacting on design decision making relative to sustainable and affordable housing delivery in developing country contexts. Aspects of affordability, sustainability, design decision making, appropriate technology use, cultural awareness, as well as current barriers to affordable and sustainable construction in developing countries are examined in detail. Results highlighted the capability of indigenous knowledge, skills and materials as well as selected appropriate technology transfer and cultural awareness by foreign bodies can be utilized in innovative ways in addressing current housing needs in many developing country contexts.