期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Ag-modified hydrogen titanate nanowire arrays for stable lithium metal anode in a carbonate-based electrolyte 被引量:1
1
作者 Zhipeng Wen Dongzheng Wu +4 位作者 Hang Li Yingxin Lin Hang Li Yang Yang Jinbao Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期282-290,共9页
In the investigation of the next-generation battery anode,Li metal has attracted increasing attention owing to its ultrahigh specific capacity and low reduction potential.However,its low columbic efficiency,limited cy... In the investigation of the next-generation battery anode,Li metal has attracted increasing attention owing to its ultrahigh specific capacity and low reduction potential.However,its low columbic efficiency,limited cycling life,and serious safety hazards have hindered the practical application of rechargeable Li metal batteries.Although several strategies have been proposed to enhance the electrochemical performance of Li metal anodes,most are centered around ether-based electrolytes,which are volatile and do not provide a sufficiently large voltage window.Therefore,we aimed to attain stable Li deposition/stripping in a commercial carbonate-based electrolyte.Herein,we have successfully synthesized hydrogen titanate(HTO)nanowire arrays decorated with homogenous Ag nanoparticles(NPs)(Ag@HTO)via simple hydrothermal and silver mirror reactions.The 3 D cross-linked array structure with Ag NPs provides preferable nucleation sites for uniform Li deposition,and most importantly,when assembled with the commercial LiNi_(0.5)Co0.2Mn_(0.3)O_(2) cathode material,the Ag@HTO could maintain a capacity retention ratio of 81.2% at 1 C after 200 cycles,however the pristine Ti foil failed to do so after only 60 cycles.Our research therefore reveals a new way of designing current collectors paired with commercial high voltage cathodes that can create high energy density Li metal batteries. 展开更多
关键词 Hydrogen titanate nanowire arrays Ag nanoparticles Li metal anode Carbonate-based electrolyte
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部