期刊文献+
共找到307篇文章
< 1 2 16 >
每页显示 20 50 100
Rational design of F,N-rich artificial interphase via chemical prelithiation initiation strategy enabling high coulombic efficiency and stable micro-sized SiO anodes
1
作者 Quanyan Man Hengtao Shen +3 位作者 Chuanliang Wei Baojuan Xi Shenglin Xiong Jinkui Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期224-232,共9页
Silicon monoxide(SiO)is regarded as a potential candidate for anode materials of lithium-ion batteries(LIBs).Unfortunately,the application of SiO is limited by poor initial Coulombic efficiency(ICE)and unsteady solid ... Silicon monoxide(SiO)is regarded as a potential candidate for anode materials of lithium-ion batteries(LIBs).Unfortunately,the application of SiO is limited by poor initial Coulombic efficiency(ICE)and unsteady solid electrolyte interface(SEI),which induce low energy,short cycling life,and poor rate properties.To address these drawbacks of SiO,we achieve in-situ construction of robust and fast-ion conducting F,N-rich SEI layer on prelithiated micro-sized SiO(P-μSiO)via the simple and continuous treatment ofμSiO in mild lithium 4,4′-dimethylbiphenyl solution and nonflammable hexafluorocyclotriphosphazene solution.Chemical prelithiation eliminates irreversible capacity through pre-forming inactive lithium silicates.Meanwhile,the symbiotic F,N-rich SEI with good mechanical stability and fast Li^(+)permeability is conductive to relieve volume expansion ofμSiO and boost the Li+diffusion kinetics.Consequently,the P-μSiO realizes an impressive electrochemical performance with an elevated ICE of 99.57%and a capacity retention of 90.67%after 350 cycles.Additionally,the full cell with P-μSiO anode and commercial LiFePO_(4) cathode displays an ICE of 92.03%and a high reversible capacity of 144.97 mA h g^(-1).This work offers a general construction strategy of robust and ionically conductive SEI for advanced LIBs. 展开更多
关键词 Chemical prelithiation Silicon monoxide SEI Lithium-ion batteries INTERPHASE engineering
下载PDF
Manipulating Na occupation and constructing protective film of P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2) as long-term cycle stability cathode for sodium-ion batteries
2
作者 Yiran Sun Pengfei Zhou +7 位作者 Siyu Liu Zhongjun Zhao Yihao Pan Xiangyan Shen Xiaozhong Wu Jinping Zhao Junying Weng Jin Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期603-611,I0013,共10页
P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)(NNMO)is promising cathode material for sodium-ion batteries(SIBs)due to its high specific capacity and fast Na+diffusion rate.Nonetheless,the irreversible P2-O_(2)phase transformati... P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)(NNMO)is promising cathode material for sodium-ion batteries(SIBs)due to its high specific capacity and fast Na+diffusion rate.Nonetheless,the irreversible P2-O_(2)phase transformation,Na+/vacancy ordering,and transition metal(TM)dissolution seriously damage its cycling stability and restrict its commercialization process.Herein,Na occupation manipulation and interface stabilization are proposed to strengthen the phase structure of NNMO by synergistic Zn/Ti co-doping and introducing lithium difluorophosp(LiPO_(2)F_(2))film-forming electrolyte additive.The Zn/Ti co-doping regulates the occupancy ratio of Nae/Nafat Na sites and disorganizes the Na+/vacancy ordering,resulting in a faster Na+diffusion kinetics and reversible P2-Z phase transition for P2-Na_(0.67)Ni_(0.28)Zn_(0.05)Mn_(0.62)Ti_(0.05)O_(2)(NNZMTO).Meanwhile,the LiPO_(2)F_(2)additive can form homogeneous and ultrathin cathode-electrolyte interphase(CEI)on NNZMTO surface,which can stabilize the NNZMTO-electrolyte interface to prevent TM dissolution,surface structure transformation,and micro-crack generation.Combination studies of in situ and ex situ characterizations and theoretical calculations were used to elucidate the storage mechanism of NNZMTO with Li PO_(2)F_(2)additive.As a result,the NNZMTO displays outstanding capacity retention of 94.44%after 500 cycles at 1C with 0.3 wt%Li PO_(2)F_(2),excellent rate performance of 92.5 mA h g^(-1)at 8C with 0.1 wt%Li PO_(2)F_(2),and remarkable full cell capability.This work highlights the important role of manipulating Na occupation and constructing protective film in the design of layered materials,which provides a promising direction for developing high-performance cathodes for SIBs. 展开更多
关键词 Layered cathode Zn/Ti co-doping Na occupation Electrolyte additive Sodium-ion batteries
下载PDF
Tuning the crystalline and electronic structure of ZrO_(2)via oxygen vacancies and nano-structuring for polysulfides conversion in lithium-sulfur batteries
3
作者 Shengnan Fu Chaowei Hu +5 位作者 Jing Li Hongtao Cui Yuanyuan Liu Kaihua Liu Yanzhao Yang Meiri Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期82-93,I0003,共13页
The recent emergence of tetragonal phases zirconium dioxide(ZrO_(2))with vacancies has generated significant interest as a highly efficient and stable electrocatalyst with potential applications in trapping polysulfid... The recent emergence of tetragonal phases zirconium dioxide(ZrO_(2))with vacancies has generated significant interest as a highly efficient and stable electrocatalyst with potential applications in trapping polysulfides and facilitating rapid conversion in lithium-sulfur batteries(LSBs).However,the reduction of ZrO_(2)is challenging,even under strong reducing atmospheres at high temperatures and pressures.Consequently,the limited presence of oxygen vacancies results in insufficient active sites and reaction interfaces,thereby hindering practical implementation.Herein,we successfully introduced abundant oxygen vacancies into ZrO_(2)at the nanoscale with the help of carbon nanotubes(CNTs-OH)through hydrogen-etching at lower temperatures and pressures.The introduced oxygen vacancies on ZrO_(2-x)/CNTs-OH can effectively rearrange charge distribution,enhance sulfiphilicity and increase active sites,contributing to high ionic and electronic transfer kinetics,strong binding energy and low redox barriers between polysulfides and ZrO_(2-x).These findings have been experimentally validated and supported by theory calculations.As a result,LSBs assembled with the ZrO_(2-x)/CNTs-OH modified separators demonstrate excellent rate performance,superior cycling stability,and ultra-high sulfur utilization.Especially,at high sulfur loading of 6 mg cm^(-2),the area capacity is still up to 6.3 mA h cm^(-2).This work provides valuable insights into the structural and functional optimization of electrocatalysts for batteries. 展开更多
关键词 Lithium-sulfur batteries Oxygen vacancies Zirconium dioxide/carbon nanotubes with–OH Improved redox kinetics Superior cycling stability
下载PDF
Enhancing efficiency and stability of organic solar cells through a simplified four-step synthesis of fully non-fused ring electron acceptor
4
作者 Chenyang Han Huanhuan Gao +7 位作者 Yanna Sun Yuanyuan Kan Zhaozhao Bi Wei Ma Yani Zhang Juan Antonio Zapien Yingguo Yang Ke Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期601-608,I0015,共9页
Design and synthesis of superior cost-effective non-fullerene acceptors(NFAs)are still big challenges for facilitating the commercialization of organic solar cells(OSCs),yet to be realized.Herein,two medium bandgap fu... Design and synthesis of superior cost-effective non-fullerene acceptors(NFAs)are still big challenges for facilitating the commercialization of organic solar cells(OSCs),yet to be realized.Herein,two medium bandgap fully non-fused ring electron acceptors(NFREAs,medium bandgap,i,e.,1,3-1,8 eV),namely PTR-2Cl and PTR-4Cl are synthesized with only four steps by using intramolecular noncovalent interaction central core,structured alkyl side chain orientation linking units and flanking with different electron-withdrawing end group.Among them,PTR-4C1 exhibits increased average electrostatic potential(ESP)difference with polymer donor,enhanced crystallinity and compactπ-πstacking compared with the control molecule PTR-2CI.As a result,the PTR-4Cl-based OSC achieved an impressive power conversion efficiency(PCE)of 14.72%,with a much higher open-circuit voltage(V_(OC))of 0.953 V and significantly improved fill factor(FF)of 0.758,demonstrating one of the best acceptor material in the top-performing fully NFREA-based OSCs with both high PCE and V_(OC).Notably,PTR-4Cl-based cells maintain a good T_80lifetime of its initial PCE after over 936 h under a continuous thermal annealing treatment and over1300 h T_(80)lifetime without encapsulation.This work provides a cost-effective design strategy for NFREAs on obtaining high V_(OC),efficient exciton dissociation,and ordered molecular packing and thus high-efficiency and stable OSCs. 展开更多
关键词 Organic solar cells Fully non-fused ring acceptors End group engineering Morphology regulation High efficiency
下载PDF
Electrolyte additive enhances the electrochemical performance of Cu for rechargeable Cu//Zn batteries
5
作者 Xinxin Song Chenggang Wang +6 位作者 Dongdong Wang Huili Peng Cheng Wang Chunsheng Wang Weiliu Fan Jian Yang Yitai Qian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期172-179,I0005,共9页
Cu-based cathodes in aqueous batteries become very attractive in view of high theoretical capacity,moderate operation voltage and rich reserves of raw materials.However,their applications are obstructed by serious sid... Cu-based cathodes in aqueous batteries become very attractive in view of high theoretical capacity,moderate operation voltage and rich reserves of raw materials.However,their applications are obstructed by serious side reactions.The side reaction mainly arises from the spontaneous formation of Cu_(2)O,which occupies the electrode surface and lowers the reaction reversibility.Here,Na_(2)EDTA is introduced to address these issues.Both experimental results and theoretical calculations indicate that the Na_(2)EDTA reshapes the solvation structure of Cu^(2+)and modifies the electrode/electrolyte interface.Therefore,the redox potential of Cu^(2+)/Cu_(2)O is reduced and the surface of Cu is protected from H2O,thereby inhibiting the formation of Cu_(2)O.Meanwhile,the change in the solvation structure reduces the electrostatic repulsion between Cu^(2+)and the cathode,leading to high local concentration and benefiting uniform deposition.The results shed light on the applications of rechargeable Cu-based batteries. 展开更多
关键词 CU ZN Reaction mechanisms Electrolyte additive Rechargeable batteries
下载PDF
Tuning Li nucleation and growth via oxygen vacancy-enriched 3D flexible self-supporting protection layer of P-Mn_(3)O_(4-x)for advanced lithium-sulfur batteries
6
作者 Tao Liu Jing Li +4 位作者 Hongtao Cui Yuanyuan Liu Kaihua Liu Huiying Wei Meiri Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期339-348,I0009,共11页
Lithium sulfur batteries have attracted much attention due to their high theoretical specific energy and environmental friendliness.However,the practical application is severely plagued by the cycling life issues resu... Lithium sulfur batteries have attracted much attention due to their high theoretical specific energy and environmental friendliness.However,the practical application is severely plagued by the cycling life issues resulting from the uncontrollable generation and growth of Li dendrites.Herein,an innovative 3D flexible self-supporting Li anode protection layer of P-Mn_(3)O_(4-x)is constructed via a facile solvothermal method followed by an annealing process.Benefiting from the rich oxygen vacancies coupled with the 3D flexible self-supporting skeleton,abundant lithiophilic sites and high ionic conductivity are obtained,which succeed in guiding Li+homogeneous adsorption and redistribution,accelerating Li+diffusion rate,inducing Li+uniform deposition and nucleation.DFT calculations and experimental results conclusively demonstrate such a protection mechanism.Meanwhile,the effective anchoring and catalytic nature of polar P-Mn_(3)O_(4-x)can also be applied as an immobilization-diffusion-conversion host to improve polysulfides redox.Taking advantage of these merits,super-stable functions for Li symmetric cell matched with P-Mn_(3)O_(4-x)layer are achieved,which exhibits an ultralong lifespan of>5000 h with an ultralow overpotential of 20 m V,far lower than that of bare Li symmetric cell(overpotential of 800 m V only after 250 h)at high current densities of 5 m A cm^(-2)and high plating/stripping capacity of 10 m A h cm^(-2).Even in Li|P-Mn_(3)O_(4-x)||S full cell at 1 C,a high initial discharge specific capacity of 843.1 m A h g^(-1)is still delivered with ultralow capacity fading rate of 0.07%per cycle after 250 cycles,further confirming the synergistic regulation of P-Mn_(3)O_(4-x)for Li nucleation behavior.This work illustrates a sufficient guarantee of 3D protection layer coupled with oxygen vacancies in guiding Li diffusion and nucleation behavior and provides new guidance for promoting the development of advanced Li-S batteries. 展开更多
关键词 Oxygen vacancy P-DOPING ithium sulfur batteries Protection layers
下载PDF
Mechanism,Kinetics,and Thermodynamic Characteristics for the Demetallization of Used Lubricating Oil via Pyrolysis
7
作者 Yang Haiyu Jiang Zhenxin +2 位作者 Chu Qingyan Jiang Peng Wang Ming 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期113-127,共15页
This study analyzed the pyrolysis mechanism,developed a pyrolysis kinetic model,and determined the corresponding thermodynamic parameters for the removal of calcium from used lubricating oil using sulfurized calcium a... This study analyzed the pyrolysis mechanism,developed a pyrolysis kinetic model,and determined the corresponding thermodynamic parameters for the removal of calcium from used lubricating oil using sulfurized calcium alkyl phenolate(T-115B)as a model compound.The pyrolysis process and products were evaluated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy.Visual inspection indicated that the removal of calcium from T-115B depended primarily on the destruction of micelles caused by the pyrolysis of compounds at high temperatures.The pyrolysis characteristics of T-115B at different heating rates were investigated by thermogravimetry and differential thermal analysis,which revealed two distinct pyrolysis phases.Thus,the pyrolysis mechanism can be described by a twostep model.The activation energy and thermodynamic parameters(ΔH,ΔG,andΔS)were determined by applying the Kissinger-Akahira-Sunose,Flynn-Wall-Ozawa,Friedman,and Starink methods;the average activation energies for T-115B pyrolysis obtained using these methods were 115.80,119.84,124.96,and 116.14 kJ/mol,respectively.Further,both stages of the pyrolysis reaction followed Fn mechanisms with n=1.39 in the first stage and n=0.86 in the second stage.This study provides reliable and effective pyrolysis models along with kinetic and thermodynamic parameters to facilitate the largescale industrial application of used lubricating oil. 展开更多
关键词 used lubricating oil sulfurized calcium alkyl phenolate pyrolysis decomposition kinetics THERMODYNAMICS non-isothermal method
下载PDF
Insights into the enhanced structure stability and electrochemical performance of Ti^(4+)/F^(-) co-doped P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2) cathodes for sodium ion batteries at high voltage 被引量:3
8
作者 Pengfei Zhou Jing Zhang +6 位作者 Zhennan Che Zuhao Quan Ju Duan Xiaozhong Wu Junying Weng Jinping Zhao Jin Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期655-662,共8页
P2-Na_(0.67)N_(i0.33)Mn_(0.67)O_(2)is considered as a promising cathode material for sodium-ion battery (SIBs)because of its high capacity and discharge potential.However,its practical use is limited by Na^(+)/vacancy... P2-Na_(0.67)N_(i0.33)Mn_(0.67)O_(2)is considered as a promising cathode material for sodium-ion battery (SIBs)because of its high capacity and discharge potential.However,its practical use is limited by Na^(+)/vacancy ordering and P2-O2 phase transition.Herein,a Ti^(4+)/F^(-) co-doping strategy is developed to address these issues.The optimal P2-Na_(0.67)Ni_(0.33)Mn_(0.37)Ti_(0.3)O_(1.9)F_(0.1) exhibits much enhanced sodium storage performance in the high voltage range of 2.0–4.4 V,including a cycling stability of 77.2%over 300cycles at a rate of 2 C and a high-rate capability of 87.7 m Ah g^(-1) at 6 C.Moreover,the P2-Na_(0.67)Ni_(0.33)Mn_(0.37)Ti_(0.3)O_(1.9)F_(0.1) delivers reversible capacities of 82.7 and 128.1 m Ah g^(-1) at-10 and 50℃ at a rate of 2 C,respectively.The capacity retentions over 200 cycles at-10℃ is 94.2%,implying more opportunity for practical application.In-situ X-ray diffraction analysis reveals that both P2-O2 phase transitions and Na^(+)/vacancy ordering is suppressed by Ti^(4+)/F^(-) co-doping,which resulting in fast Na^(+) diffusion and stable phase structure.The hard carbon//P2-Na_(0.67)Ni_(0.33)Mn_(0.37)Ti_(0.3)O_(1.9)F_(0.1) full cell exhibits a high energy density of 310.2 Wh kg^(-1) and remarkable cyclability with 82.1%retention after 300 cycles at 1 C in the voltage range of 1.5–4.2 V.These results demonstrate that the co-doping Ti^(4+)/F^(-) is a promising strategy to improve the electrochemical properties of P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2),providing a facile tactic to develop high performance cathode materials for SIBs. 展开更多
关键词 P2-Na_(0.67)N_(i0.33)Mn_(0.67)O_(2) Ti^(4+)/F^(-)co-doping Phase transition Na^(+)/vacancy ordering Sodium-ion batteries
下载PDF
Analysis of Amino Acids in a Single Human Red Blood Cell by Capillary Zone Electrophoresis with Intracellular NDA- derivatization and Electrochemical Detection 被引量:2
9
作者 Qian DONG Xiao Lei WANG +1 位作者 Lan Lan ZHU Wen Rui JIN 《Chinese Chemical Letters》 SCIE CAS CSCD 2002年第7期655-657,共3页
A novel method for determination of amino acids in individual human red blood cells has been developed. In this method, the derivatization reagents (NDA and CN-) are introduced into living cells by electroporation. ... A novel method for determination of amino acids in individual human red blood cells has been developed. In this method, the derivatization reagents (NDA and CN-) are introduced into living cells by electroporation. After completion of derivatization, the amino acids in a single cell is determined by capillary zone electrophoresis with end-column amperometric detection. 展开更多
关键词 Capillary electrophoresis electrochemical detection single cell analysis amino acid.
下载PDF
Synthesis and Performance of an Associative Anti-shear Drag Reducer Based on Hydrogen Bond Association of Dodecyl Methacrylate
10
作者 Lu Yong Li Chenhao +5 位作者 Li Hao Chen Yue Xu Dan Wang Yiran Meng Yeqiao Zhang Xiaolai 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第1期23-33,共11页
Using K2S2O8-Na2SO3 as the redox initiation system,a hydrogen-bond-association-based dodecyl methacrylate system associative anti-shear drag reducer was synthesised by standard emulsion polymerisation.The reaction pro... Using K2S2O8-Na2SO3 as the redox initiation system,a hydrogen-bond-association-based dodecyl methacrylate system associative anti-shear drag reducer was synthesised by standard emulsion polymerisation.The reaction process was simple and gentle as well as safe and stable.Molecular design was carried out using molecular dynamics simulation methods.The results of infrared spectroscopy,thermogravimetric analysis,differential scanning calorimetry,gel chromatography,and laser light scattering showed that the reaction polymerisation was relatively complete,the product was uniform,the molecular weight distribution was controllable,and the synthesised polymer had good flexibility.The donor lauryl methacrylate-styrene-methacrylic acid(LMA-St-MAA)and acceptor lauryl methacrylate-styrene-dimethylaminoethyl methacrylate(LMA-St-DMA)polymers had an associative intermolecular interaction force,which increased the molecular cluster size of the associative system complex.The complex had good shear resistance,and the test results of the tube pump shear test showed that the synthesised associative oil-soluble polymer drag reduction system exhibited better drag reduction rate performance than poly-α-olefins over repeated cycles.The research results provide a reference plan for minimising the number of station-to-station inputs,thereby ensuring the stability of oil pipelines and reducing transportation costs. 展开更多
关键词 drag reducer associative effect drag reduction rate shear resistance
下载PDF
Bimetallic selenide heterostructure with directional built-in electricfield confined in N-doped carbon nanofibers for superior sodium storage with ultralong lifespan
11
作者 Junying Weng Degui Zou +5 位作者 Wenyong Yuan Pengfei Zhou Minghui Ding Jin Zhou Hailin Cong Fangyi Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期407-416,共10页
Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and u... Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and uniform distribution of the heterostructure is still a great challenge.Herein,the regulated novel CoSe_(2)/NiSe_(2)heterostructure confined in N-doped carbon nanofibers(CoSe_(2)/NiSe_(2)@N-C)are prepared by using Co/Ni-ZIF template,in which,the CoSe_(2)/NiSe_(2)heterostructures realize uniform distribution on a micro level.Benefiting from the unique heterostructure and N-doped carbon nanofibers,the CoSe_(2)/NiSe_(2)@N-C deliveries superior rate capability and durable cycle lifespan with a reversible capacity of 400.5 mA h g^(-1)after 5000 cycles at 2 A g^(-1).The Na-ion full battery with CoSe_(2)/NiSe_(2)@N-C anode and layered oxide cathode displays a remarkable energy density of 563 W h kg^(-1)with 241.1 W kg^(-1)at 0.1 A g^(-1).The theoretical calculations disclose that the periodic and directional built-in electric-field along with the heterointerfaces of CoSe_(2)/NiSe_(2)@N-C can accelerate electrochemical reaction kinetics.The in(ex)situ experimental measurements reveal the reversible conversion reaction and stable structure of CoSe_(2)/NiSe_(2)@N-C during Na+insertion/extraction.The study highlights the potential ability of precisely controlled heterostructure to stimulate the electrochemical performances of advanced anode for SIBs. 展开更多
关键词 CoSe_(2)/NiSe_(2) heterostructure Built-in electric-field Rate capability Ultralong lifespan Sodium ion batteries
下载PDF
Preparation of polypyrrole-coated CuFe_2O_4 and their improved electrochemical performance as lithium-ion anodes
12
作者 Huayun Xu Yunpo Wang +4 位作者 Long Zheng Xinhui Duan Lihui Wang Jian Yang Yitai Qian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期354-357,共4页
CuFe2O4 network,prepared via the electrostatic spray deposition technique,with high reversible capacity and long cycle lifetime for lithium ion battery anode material has been reported.The reversible capacity can be f... CuFe2O4 network,prepared via the electrostatic spray deposition technique,with high reversible capacity and long cycle lifetime for lithium ion battery anode material has been reported.The reversible capacity can be further enhanced by coating high electronic conductive polypyrrole(PPy).At the current density of 100mA·g-1.Li/CuFe2O4 electrode delivers a reversible capacity of 842.9 mAh·g-1 while the reversible capacity of Li/PPy-coated CuFe2O4 electrode increases up to 1106.7 mAh-g’.A high capacity of 640.7 mAhg"1 for the Li/PPy-coated CuFe2O4electrode is maintained in contrast of 398.9 mAh·g-1 for CuFe2O4 electrode after 60 cycles,which demonstrates good electrochemical performance of the composite due to the increase of electronic conductivity.The electrochemical impedance spectroscopy(EIS) further reveals that the Li/PPy-coated CuFe2O4 electrode has a lower charge transfer resistance than the Li/CuFe2C〉4 electrode. 展开更多
关键词 CuFe2O4 polypyrrole-coated electrostatic spray deposition lithium ion batteries
下载PDF
Understanding electrolyte salt chemistry for advanced potassium storage performances of transition-metal sulfides
13
作者 Guangyao Ma Yingying Wang +4 位作者 Jinmei Song Kepeng Song Nana Wang Jian Yang Yitai Qian 《Carbon Energy》 SCIE CAS 2022年第3期332-345,共14页
Molybdenum disulfide/carbon nanotubes assembled by ultrathin nanosheets are synthesized to illustrate the electrolyte salt chemistry via potassium bis-(fluorosulfonyl)imide(KFSI)versus potassium hexafluorophosphate(KP... Molybdenum disulfide/carbon nanotubes assembled by ultrathin nanosheets are synthesized to illustrate the electrolyte salt chemistry via potassium bis-(fluorosulfonyl)imide(KFSI)versus potassium hexafluorophosphate(KPF6).Compared to the case of KPF6,the electrochemical performances using KFSI as the electrolyte salt are greatly improved:~275 mAh g^(−1) after 15,000 cycles at 1 A g^(−1),or~172 mAh g^(−1) even at 40 A g^(−1).These results represent one of the best performances for the reported anode materials.The enhanced performances could be attributed to the FSI-induced changes in the solvate structures,that is,a large solvation energy,a high lowest unoccupied mole cular orbital,and a small bonding dissociation energy of S-F.In this case,a uniform and robust solid-electrolyte interphase(SEI)is produced,improving the mechanical properties and the interface integrity.Then,the uncontrollable fracture and repeated growth of SEI,which always lead to the dissolution of sulfur species and the blockage of charge transfer in the case of KPF6,are well inhibited.This similar enhancement works for other sulfides by KFSI,demonstrating the general importance of this electrolyte salt chemistry. 展开更多
关键词 anode materials electrolyte chemistry MoS_(2) potassium-ion batteries
下载PDF
A convenient preparation of ethoxymethoxymethane and its effect on the solubility of methanol/gasoline blends 被引量:4
14
作者 Shan Jian Cao Ai You Hao Hong Yuan Sun Tao Sun 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第8期973-976,共4页
Ethoxymethxoymethane (EMM) was conveniently prepared by acetalization of aqueous formaldehyde with methanol andethanol in a batch reactive distillation mode using a cation-exchange resin catalyst for the first time.... Ethoxymethxoymethane (EMM) was conveniently prepared by acetalization of aqueous formaldehyde with methanol andethanol in a batch reactive distillation mode using a cation-exchange resin catalyst for the first time. EMM was found tO be asignificant cosolvent of methano1/gasoline blends, ? 2009 Ai You Hao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All fights reserved. 展开更多
关键词 Ethoxymethoxymethane Cation-exchange resin catalyst Batch reactive distillation Methano1/gasoline COSOLVENT
下载PDF
Drag reduction and shear resistance properties of ionomer and hydrogen bond systems based on lauryl methacrylate 被引量:3
15
作者 Yu Ping Li Changyu Zhang Changqiao Chen Shiwei Fang Shu Sun Hui 《Petroleum Science》 SCIE CAS CSCD 2011年第3期357-364,共8页
Based on molecular dynamics simulation results, a lauryl methacrylate polymer with drag reduction and shear resistance properties was designed, and synthesized by emulsion polymerization using 2-vinyl pyridine and met... Based on molecular dynamics simulation results, a lauryl methacrylate polymer with drag reduction and shear resistance properties was designed, and synthesized by emulsion polymerization using 2-vinyl pyridine and methyl methacrylate as the polar polymerization monomer. After ionization of lauryl methacrylate polymer, an ion-dipole interaction based drag reduction agent (DRA) was obtained. The existence of ion-dipole interaction was proven through characterization of the drag-reducing agent from its infrared (IR) spectrum. The pilot-scale reaction yield of the DRA under optimum conditions was investigated, and the drag reduction and shear resistance properties were measured. The results show that: l) The ion-dipole or hydrogen bonding interaction can form ladder-shaped chains, therefore the synthesized DRA has shear resistance properties; 2) The larger the molecular weight (MW) and more concentrated the distribution of MW, the better the drag reduction efficiency and the performance of the ionomer system was superior to that of the hydrogen bonding system; 3) With increasing shear frequency, the drag-reduction rates of both the DRAs decreased, and the drag reduction rate of the ionomer system decreased more slowly than of the corresponding hydrogen bonding system. From the point of view of drag reduction rate and shear resistance property, the ionomer system is more promising than the hydrogen bonding system 展开更多
关键词 Molecular design ion-dipole interaction hydrogen bonding drag reduction rate shearresistance property
下载PDF
Rational design of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide 被引量:3
16
作者 Baohua Zhang Jintao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1050-1066,共17页
The recent development of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide(CO) has attracted much attention due to their unique activity and selectivity compared to other metal catalysts. Pa... The recent development of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide(CO) has attracted much attention due to their unique activity and selectivity compared to other metal catalysts. Particularly, Cu is the unique electrocatalyst for COelectrochemical reduction with high selectivity to generate a variety of hydrocarbons. In this review, we mainly summarize the recent advances on the rational design of Cu nanostructures, the composition regulation of Cu-based alloys, and the exploitation of advanced supports for improving the catalytic activity and selectivity toward electrochemical reduction of CO. The special focus is to demonstrate how to enhance the activity and selectivity of Cubased electrocatalyst for COreduction. The perspectives and challenges for the development of Cu-based electrocatalysts are also addressed. We hope this review can provide timely and valuable insights into the design of advanced electrocatalytic materials for COelectrochemical reduction. 展开更多
关键词 ELECTROCATALYSTS COPPER ALLOY SELECTIVITY CO_2 electrochemical reduction Electrocatalytic activity Faradaic efficiency
下载PDF
Synthesis and Crystal Structure of Ethyl 1-(2-bromoethyl)-3-(4-meth-oxyphenyl)-1H-pyrazole-5-carboxylate 被引量:3
17
作者 王毅 邵华 +1 位作者 徐为人 王建武 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2012年第1期110-114,共5页
The title compound ethyl 1-(2-bromoethyl)-3-(4-methoxyphenyl)-1H-pyrazole-5-carboxylate 1 has been synthesized and structurally characterized by single-crystal X-ray diffraction.The crystal is of monoclinic(C15H1... The title compound ethyl 1-(2-bromoethyl)-3-(4-methoxyphenyl)-1H-pyrazole-5-carboxylate 1 has been synthesized and structurally characterized by single-crystal X-ray diffraction.The crystal is of monoclinic(C15H17BrN2O3,Mr = 353.22),space group C21 with a = 24.691(7),b = 6.7678(17),c = 17.884(5) ,β = 97.184(5)o,V = 2965.1(13) 3,Z = 8,Dc = 1.583 g.cm-3,F(000) = 1440,μ = 2.784 mm-1,the final R = 0.0260 and wR = 0.0596 for 2684 observed reflections with I 2σ(I).All the carbon atoms in the molecule are nearly coplanar except C(15),with a large conjugated system among the carbonyl group,pyrazole ring and the benzene ring.Three non-classical intermolecular hydrogen bonds help to stabilize the crystal lattice.The regioselectivity was rationalized based on the coordination of potassium ion with the N-anion and the carbonyl oxygen atom. 展开更多
关键词 synthesis crystal structure PYRAZOLE ALKYLATION regioselectivity
下载PDF
Shape control technology during electrochemical synthesis of gold nanoparticles 被引量:2
18
作者 Xiu-yu Liu Cong-ying Cui +2 位作者 Ying-wen Cheng Hou-yi Ma Duo Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第5期486-492,共7页
Gold nanoparticles with different shapes and sizes were prepared by adding gold precursor (HAuC14) to an electrolyzed aqueous solution of poly(N-vinylpyrrolidone) (PVP) and KN03, which indicates the good reducin... Gold nanoparticles with different shapes and sizes were prepared by adding gold precursor (HAuC14) to an electrolyzed aqueous solution of poly(N-vinylpyrrolidone) (PVP) and KN03, which indicates the good reducing capacity of the PVP-containing solution after being treated by electrolysis. Using a catholyte and an anolyte as the reducing agents for HAuC14,' respectively, most gold nanoparticles were spherical particles in the former case but plate-like particles in the latter case. The change in the pH value of electrolytes caused by the electrolysis of water would be the origin of the differences in shape and morphology of gold nanoparticles. A hypothesis of the H+ or OH- catalyzed PVP degradation mechanism was proposed to interpret why the pH value played a key role in determining the shape or morphology of gold nanoparticles. These experiments open up a new method for effectively controlling the shape and morphology of metal nanoparticles by using electrochemical methods. 展开更多
关键词 metal nanopaxticles SYNTHESIS GOLD shape control electrochemical methods
下载PDF
Different role of second phase in the micro-galvanic corrosion of WE43 Mg alloy in NaCl and Na_(2)SO_(4) solution 被引量:2
19
作者 Baojing Feng Guonan Liu +7 位作者 Peixu Yang Sensen Huang Dongqing Qi Peng Chen Chengduo Wang Jiang Du Shaojun Zhang Jinhui Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第6期1598-1608,共11页
Effect of the second phase in the micro-galvanic corrosion of a commercial Mg alloy containing rare earth elements, cast WE43 alloy,was investigated in 0.6 M NaCl solution and 0.6 M Na_(2)SO_(4)solution by scanning el... Effect of the second phase in the micro-galvanic corrosion of a commercial Mg alloy containing rare earth elements, cast WE43 alloy,was investigated in 0.6 M NaCl solution and 0.6 M Na_(2)SO_(4)solution by scanning electron microscopy(SEM) observations, scanning Kelvin probe force microscopy(SKPFM) analysis, hydrogen evolution, weight loss measurement, and electrochemical techniques. It is confirmed that the second phase of cast WE43 alloy is more active than Mg matrix and exhibits an anodic role in the micro-galvanic corrosion with α-Mg matrix as cathode and dissolves preferentially in Na_(2)SO_(4)solution, in contrast to the situation in NaCl solution. The corrosion rate of cast WE43 alloy in Na_(2)SO_(4)solution is much higher than that in NaCl solution, which is different from the conventional wisdom and could be attributed to the different role of the second phase in the micro-galvanic corrosion in two solutions. 展开更多
关键词 Mg rare earth alloy Second phase Micro-galvanic corrosion Anode role Solution anion
下载PDF
Effect of high temperature annealing on strain and band gap of GaN nanoparticles 被引量:1
20
作者 肖洪地 毛宏志 +1 位作者 林兆军 马洪磊 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期495-499,共5页
Black-coloured GaN nanoparticles with an average grain size of 50 nm have been obtained by annealing GaN nanoparticles under flowing nitrogen at 1200 ℃ for 30 min. XRD measurement result indicates an increase in the ... Black-coloured GaN nanoparticles with an average grain size of 50 nm have been obtained by annealing GaN nanoparticles under flowing nitrogen at 1200 ℃ for 30 min. XRD measurement result indicates an increase in the lattice parameter of the GaN nanoparticles annealed at 1200 ℃, and HRTEM image shows that the increase cannot be ascribed to other ions in the interstitial positions. If the as-synthesised GaN nanoparticles at 950 ℃ are regarded as standard, the thermal expansion changes nonlinearly with temperature and is anisotropic; the expansion below 1000 ℃ is smaller than that above 1000 ℃. This study provides an experimental demonstration for selecting the proper annealing temperature of GaN. In addition, a large blueshift in optical bandgap of the annealed GaN nanoparticles at 1200 ℃ is observed, which can be ascribed to the dominant transitions from the C(FT) with the peak energy at 3.532 eV. 展开更多
关键词 GaN nanoparticles thermal expansion STRAIN blue shift bandgap
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部