The stacking and aggregation of graphene nanosheets have been obstacles to their application as electrode materials for microelectronic devices.This study deploys a one-step,scalable,facile electrochemical exfoliation...The stacking and aggregation of graphene nanosheets have been obstacles to their application as electrode materials for microelectronic devices.This study deploys a one-step,scalable,facile electrochemical exfoliation technique to fabricate nitrogen(N)and chlorine(Cl)co-doped graphene nanosheets(i.e.,N-Cl-G)via the application of constant voltage on graphite in a mixture of 0.1 mol/L H_(2)SO_(4)and 0.1 mol/L NH_(4)Cl without using dangerous and exhaustive operation.The introduction of Cl(with its large radius)and N,both with high electrical negativity,facilitates the modulation of the electronic structure of graphene and creation of rich structural defects in it.Consequently,in the as-constructed supercapacitors,N-Cl-G exhibits a high specific capacitance of 77 F/g at 0.2 A/g and remarkable cycling stability with 91.7%retention of initial capacitance after 20,000 cycles at 10 A/g.Furthermore,a symmetrical supercapacitor assembled with N-Cl-G as the positive and negative electrodes(denoted as N-Cl-G//N-Cl-G)exhibits an energy density of 3.38 Wh/kg at a power density of 600 W/kg and superior cycling stability with almost no capacitance loss after 5000 cycles at 5 A/g.This study provides a scalable protocol for the facile fabrication of high-performance co-doped graphene as an electrode material candidate for supercapacitors.展开更多
Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The lay...Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The layered cathode materials of ZIBs hold a stable structure during charge and discharge reactions owing to the ultrafast and straightforward(de)intercalation-type storage mechanism of Zn^(2+)ions in their tunable interlayer spacing and their abilities to accommodate other guest ions or molecules.Nevertheless,the challenges of inadequate energy density,dissolution of active materials,uncontrollable byproducts,increased internal pressure,and a large de-solvation penalty have been deemed an obstacle to the development of ZIBs.In this review,recent strategies on the structure regulation of layered materials for aqueous zinc-ion energy storage devices are systematically summarized.Finally,critical science challenges and future outlooks are proposed to guide and promote the development of advanced cathode materials for ZIBs.展开更多
A novel composite material(TD)composed of TS-1 microcrystalline and dendritic mesoporous silica nanospheres(DMSNs)was successfully prepared.The TD composite material had open pore structure and large specific surface ...A novel composite material(TD)composed of TS-1 microcrystalline and dendritic mesoporous silica nanospheres(DMSNs)was successfully prepared.The TD composite material had open pore structure and large specific surface area,which was conducive to the mass transfer of reactants and products.The Ti element in TS-1 could be used as an electron assistant,and the spillover d-electrons were conducive to the improvement of the sulfidation and dispersion of MoS_(2),thereby forming more type II MoS_(2) active phases.The incorporation of Ti could bring more Brønsted(B)and Lewis(L)acid,which was conducive to the hydrogenation pathway(HYD)selectivity(41.2%)of dibenzothiophene(DBT)hydrodesulfurization(HDS)and isomerization(ISO)route selectivity(21.9%)of 4,6-dimethyldibenzothiophene(4,6-DMDBT)HDS,thus improve the HDS activity of DBT and 4,6-DMDBT.NiMo/TD-70(Aging temperature=70℃)had the best HDS activities of DBT(99.0%)and 4,6-DMDBT(93.7%)due to its large open pore structure,good acidity,suitable metal-support interaction(MSI)and perfect dispersion of the metallic active sites.展开更多
Using clean solar energy to reduce CO_(2)into value-added products not only consumes the over-emitted CO_(2)that causes environmental problems,but also generates fuel chemicals to alleviate energy crises.The photocata...Using clean solar energy to reduce CO_(2)into value-added products not only consumes the over-emitted CO_(2)that causes environmental problems,but also generates fuel chemicals to alleviate energy crises.The photocatalytic CO_(2)reduction reaction(PCO_(2)RR)relies on the semiconductor photocatalysts that suffer from high recombination rate of the photo-generated carriers,low light harvesting capability,and low stability.This review explores the recent discoveries on the novel semiconductors for PCO_(2)RR,focusing on the rational catalyst design strategies(such as surface engineering,band engineering,hierarchical structure construction,single-atom catalysts,and biohybrid catalysts)that promote the catalytic performance of semiconductor catalysts on PCO_(2)RR.The advanced characterization techniques that contribute to understanding the intrinsic properties of the photocatalysts are also discussed.Lastly,the perspectives on future challenges and possible solutions for PCO_(2)RR are presented.展开更多
The inhibiting effect of ciprofloxacin,norfloxacin and ofloxacin on the corrosion of mild steel in 1 mol·L-1 HCl and the mechanism were studied at different temperatures using mass loss measurement,electrochemica...The inhibiting effect of ciprofloxacin,norfloxacin and ofloxacin on the corrosion of mild steel in 1 mol·L-1 HCl and the mechanism were studied at different temperatures using mass loss measurement,electrochemical method,and X-ray photoelectron spectroscopy(XPS) .Effective inhibition was shown by mass loss,potentiodynamic polarization and impedance spectroscopy measurement.The corrosion rate of the metal in the mass loss measurement,and the corrosion reaction on cathode and anode in the electrochemical measurement were accelerated when temperature was increased.XPS results showed that the inhibitors adsorbed effectively on the metal surface.展开更多
A continuous online in situ attenuated total reflection Fourier-transform infrared(ATR-FTIR)spectroscopic technique was used to investigate the adsorption and desorption kinetics of heptyl xanthate(KHX)on the surface ...A continuous online in situ attenuated total reflection Fourier-transform infrared(ATR-FTIR)spectroscopic technique was used to investigate the adsorption and desorption kinetics of heptyl xanthate(KHX)on the surface of ZnO and Cu(Ⅱ)activated ZnO.The results showed that Cu(Ⅱ)facilitated the xanthate adsorption process on the surface,and led to the formation of cuprous xanthate(CuX),dixanthogen(X_(2))and xanthate aggregates.The adsorption of xanthate on the surface of ZnO and Cu(Ⅱ)activated ZnO was found to both follow the pseudo-first-order kinetic model.When the NaOH solution was used as a desorption agent,the adsorbed xanthate can largely be removed due to the competition between OH^(−)and HX−.However,for Cu(Ⅱ)activated ZnO,the peak intensities at 1197 and 1082 cm^(−1) had no obvious weakening,and the absorption intensities at 1261 and 1026 cm^(−1) increased in the first 5 min,indicating an ion-exchange reaction between OH^(−)and surface zinc bonded xanthate HX−and the reorganization of adsorbed xanthate.展开更多
The mechanism of cycloaddition reaction between singlet state H2Ge=Ge: and acetaldehyde has been investigated with the MP2/6-311++G** method. From the potential energy profile, it could be predicted that the reac...The mechanism of cycloaddition reaction between singlet state H2Ge=Ge: and acetaldehyde has been investigated with the MP2/6-311++G** method. From the potential energy profile, it could be predicted that the reaction has two competitive dominant reaction pathways. The reaction rule presented is that the two reactants firstly form a four-membered Ge-heterocyclic ring germylene through the [2+2] cycloaddition reaction. As the 4p unoccupied orbital of Ge: atom in the four-membered Ge-heterocyclic ring germylene and the π orbital of acetaldehyde form a π→p donor-acceptor bond, the four-membered Ge-heterocyclic ring germylene further combines with acetaldehyde to give an intermediate. Because the Ge atom in intermediate exhibits sp3 hybridization after transition state, the intermediate isomerizes to a spiro-Ge-heterocyclic ring compound via a transition state. Simultaneously, the ring strain of the four-membered Ge-heterocyclic ring germylene makes it isomerize to a twisted four-membered ring product.展开更多
X2Si=Ge: (X = H, Me, F, CI, Br, Ph, Ar...) is a new species. Its cycloaddition reaction is a new area for the study of germylene chemistry. The mechanism of cycloaddition reaction between singlet state Me2Si=Ge: a...X2Si=Ge: (X = H, Me, F, CI, Br, Ph, Ar...) is a new species. Its cycloaddition reaction is a new area for the study of germylene chemistry. The mechanism of cycloaddition reaction between singlet state Me2Si=Ge: and formaldehyde has been investigated with the CCSD(T)//MP2/cc-pvtz method. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rule presented is that the two reactants first form a four-membered Si-heterocyclic ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge: atom in the four-membered Si-heterocyclic ring germylene and the π orbital of formaldehyde form a π→p donor-acceptor bond, the four-membered Si-heterocyclic ring germylene further combines with formaldehyde to form an intermediate. Because the Ge atom in the intermediate undergoes sp^3 hybridization after transition state, then the intermediate isomerizes to a spiro-Ge-heterocyclic ring compound involving Si via a transition state. The research result indicates the laws of cycloaddition reaction between HzSi=Ge: and formaldehyde. It has important reference value for the cycloaddition reaction between X2Si=Ge: (X = H, Me, F, CI, Br, Ph, Ar…) and asymmetric to-bonded compounds, which is significant for the synthesis of small-ring and spiro-Ge-heterocyclic compounds involving Si. The study extends research area and enriches the research content of germylene chemistry.展开更多
The mechanism of cycloaddition reaction between singlet silylene carbene and acetone has been investigated with CCSD(T)//MP2/6-31G method. From the potential energy profile, it can be predicted that the reaction has...The mechanism of cycloaddition reaction between singlet silylene carbene and acetone has been investigated with CCSD(T)//MP2/6-31G method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. One consists of two steps: (1) the two reactants (R1, R2) firstly form a four-membered ring intermediate (INT4) through a barrier-free exothermic reaction of 585.9 kJ/mol; (2) Then intermediate (INT4) isomerizes to CH3-transfer product (P4.1) via a transition state (TS4.1) with energy barrier of 5.3 kJ/mol. The other is as follows: on the basis of intermediate (INT4) created between R1 and R2, intermediate (INT4) further reacts with acetone (R2) to form the intermediate (INT5) through a barrier-free exothermic reaction of 166.3 kJ/mol; Then, intermediate (INT5) isomerizes to a silicic bis-heterocyclic product (P5) via a transition state (TS5), for which the barrier is 54.9 kJ/mol. The presented rule of this reaction: the [2+2] cycloaddition effect between the π orbital of silylene carbene and the π orbital of π-bonded compounds leads to the formation of a four-membered ring intermediate (INT4); The unsaturated property of C atom from carbene in the four-membered ring intermediate (INT4) results in the generation of CH3-transfer product (P4.1) and silicic bis-heterocyclic compound (P5).展开更多
The X2Ge=Si: (X = H, Me, F, reaction is a new area for the study of silylene between singlet CI2Ge=Si: and formaldehyde CI, Br, Ph, At...) is a new species. Its cycloaddition chemistry. The mechanism of cycloaddit...The X2Ge=Si: (X = H, Me, F, reaction is a new area for the study of silylene between singlet CI2Ge=Si: and formaldehyde CI, Br, Ph, At...) is a new species. Its cycloaddition chemistry. The mechanism of cycloaddition reaction has been investigated with CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The reaction rule presented is that the two reactants firstly form a four-membered Ge-heterocyclic ring silylene through the [2+2] cycloaddition reaction. Owing to the 3p unoccupied orbital of Si: atom in the four-membered Ge-heterocyclic ring silylene and the π orbital of formaldehyde forming a π-p donor-acceptor bond, the four-membered Ge-heterocyclic ring silylene further combines with formaldehyde to form an intermediate. Because the Si: atom in intermediate shows sp3 hybridization after transition state, the intermediate isomerizes to a spiro-Si-heterocyclic ring compound involving Ge via a transition state. Simultaneously, the ring strain of the four-membered Ge-heterocyclic ring silylene makes it isomerize to a twisted four-membered ring product. The research result indicates the laws of cycloaddition reaction between X2Ge=Si: (X = H, Me, F, C1, Br, Ph, Ar...) and the asymmetric g-bonded compounds, which are significant for the synthesis of small-ring and spiro-Si-heterocyclic ring compound involving Ge The study extends the research area and enriches the research content of silvlene chemistrv.展开更多
A new coordination complex [In(pda)1.5(bpy)]n (1, H2pda = 1,4-phenylenediacetic acid, bpy = 2,2'-bipyridine) has been synthesized under hydrothermal conditions and characterized by IR spectrum, elemental analys...A new coordination complex [In(pda)1.5(bpy)]n (1, H2pda = 1,4-phenylenediacetic acid, bpy = 2,2'-bipyridine) has been synthesized under hydrothermal conditions and characterized by IR spectrum, elemental analysis, PXRD and single-crystal X-ray diffraction analysis. Crystal data for the title complex are as follows: monoclinic system, space group P21/n with a = 11.8015(7), b = 15.9551(10), c = 11.8858(8)A^°, β = 94.844(6)°, V = 2230.0(2) A^°3, Mr = 559.25, Z = 4, F(000) = 1124, Dc = 1.666 g/cm^3, μ(MoKα) = 1.106 mm^-1, R = 0.0269 and wR = 0.0569 for 4534 observed reflections with I 〉 2σ(I). Complex 1 displays a 3D supermolecular structure based on the 1D zizag chains. Fluorescence spectrum measurement indicates that complex 1 shows strong fluorescence emission with a maximum peak at 447 nm in the solid state at room temperature.展开更多
X2Si=Sn:(X = H, Me, F, Cl, Br, Ph, Ar…) are new species of chemistry. The cycloaddition reaction of X2Si=Sn: is a new study field of stannylene chemistry. To explore the rules of cycloaddition reaction between X2Si=S...X2Si=Sn:(X = H, Me, F, Cl, Br, Ph, Ar…) are new species of chemistry. The cycloaddition reaction of X2Si=Sn: is a new study field of stannylene chemistry. To explore the rules of cycloaddition reaction between X2Si=Sn: and the symmetric p-bonded compounds, the cycloaddition reactions of Cl2Si=Sn: and ethylene were selected as model reactions in this paper.The mechanism of cycloaddition reaction between singlet Cl2Si=Sn: and ethylene has been first investigated with the MP2/GENECP(C, H, Cl, Si in 6-311++G**;Sn in LanL2dz) method in this paper. From the potential energy profile, it could be predicted that the reaction has one dominant reaction channel. The reaction rule presented is that the 5p unoccupied orbital of Sn in Cl2Si=Sn: and the π orbital of ethylene forming a p→p donor-acceptor bond, resulting in the formation of an intermediate. Instability of the intermediate makes it isomerize to a four-membered Si-heterocyclic ring stannylene. Because the 5p unoccupied orbital of Sn atom in the four-membered Si-heterocyclic ring stannylene and the π orbital of ethylene form a p→p donor-acceptor bond, the four-membered Si-heterocyclic ring stannylene further combines with ethene to form another intermediate. Because the Sn atom in the intermediate shows sp3 hybridization after transition state, the intermediate isomerizes to a Si-heterocyclic spiro-Sn-heterocyclic ring compound. The research result indicates the laws of cycloaddition reaction between X2Si=Sn: and the symmetric π-bonded compounds. The study opens up a new research field for stannylene chemistry.展开更多
A new coordination complex [Cd(pda)(pyz)(H2O)2]n(1, H2 pda = 1,4-phenylenediacetic acid, pyz = pyrazine) have been synthesized and structurally characterized. Crystal data for the title complex are as follows: orthorh...A new coordination complex [Cd(pda)(pyz)(H2O)2]n(1, H2 pda = 1,4-phenylenediacetic acid, pyz = pyrazine) have been synthesized and structurally characterized. Crystal data for the title complex are as follows: orthorhombic system, space group Ccmb with a = 11.5245(3) b = 19.5069(5) c = 11.4231(3) A, V = 2568.00(12) A3, Mr = 188.31, Z = 16, F(000) = 1480, Dc = 1.948 g/cm3, μ(Mo Kα) = 1.725 mm-1, R = 0.0195 and w R = 0.0462 for 1357 observed reflections with I 】 2σ(I). In the title complex, the central Cd(II) ion is located in a distorted octahedral coordination environment. Two Cd(II) ions are bridged by two pda2- ligands and one pyz ligand to form a bi-loop structure. Luminescent property of the complex has also been studied.展开更多
Metal confinement catalyst Mo S_(2)/Pt@TD-6%Ti(TD,TS-1/Dendritic mesoporous silica nanoparticles composite) in dendritic hierarchical pore structures was synthesized and showed excellent sulfur-resistance performance ...Metal confinement catalyst Mo S_(2)/Pt@TD-6%Ti(TD,TS-1/Dendritic mesoporous silica nanoparticles composite) in dendritic hierarchical pore structures was synthesized and showed excellent sulfur-resistance performance and stabilities in catalytic hydrodesulfurization reactions of probe sulfide molecules.The Mo S_(2)/Pt@TD-6%Ti catalyst combines the concepts of Pt-confinement effect and hydrogen spillover of Pt noble metal.The modified micropores of Mo/Pt@TD-6%Ti only allow the migration and dissociation of small H_(2) molecules(0.289 nm),and effectively keep the sulfur-containing compounds(e.g.H_(2)S,0.362 nm) outside.Thus,the Mo S_(2)/Pt@TD-6%Ti catalyst exhibits higher DBT and 4,6-DMDBT HDS activities because of the synergistic effect of the strong H_(2) dissociation ability of Pt and desulfurization ability of Mo S_(2) with a lower catalyst cost.This new concept combining H2dissociation performance of noble metal catalyst with the desulfurization ability of transition metal sulfide Mo S_(2) can protect the noble metal catalyst avoiding deactivation and poison,and finally guarantee the higher activities for DBT and 4,6-DMDBT HDS.展开更多
Hydrogen peroxide (H2O2), first synthesized in 1818 through the acidification of barium peroxide (BaO2) with nitric acid, is a clear and colorless liquid which is entirely miscible with water and variety of organic so...Hydrogen peroxide (H2O2), first synthesized in 1818 through the acidification of barium peroxide (BaO2) with nitric acid, is a clear and colorless liquid which is entirely miscible with water and variety of organic solvents such as carboxylic acid and esters. Anthraquinone process (an old production process of H2O2), a batch process carried out in large facilities is an energy demanding process that requires large facilities, and involves oxidation of anthraquinone molecules and sequential hydrogenation. Moreover, the direct synthesis method enables production in a continuous mode as well as it permits small scale, decentralized production. Many drawbacks associated with these processes such as, energetic inefficiency and inherent disadvantages have motivated researchers, industry and academia to find out alternative for synthesis of H2O2. Electrochemical route based on catalyst selectively reduce oxygen to hydrogen peroxide. O2 is cathodically reduced to produce H2O2 via 2-electron pathway or 4-electron pathway to get H2O. Electrolysis of water has an important place in storage and electrochemical energy conversion process where problem is to choose a sufficiently stable and active electrode for anodic oxygen evolution reaction. Most commonly used catalysts on the cathode are carbon based materials such as carbon black, carbon nanotubes, graphite, carbon sponge, and carbon fiber. In perspective of expanding demand of production and usage of hydrogen peroxide we review the past literature to summarize different production processes of H2O2. In this review, we mainly focus on electrochemical production of hydrogen peroxide along with other alternatives, such as anthraquinone method for industrial H2O2 production and direct synthesis process. We also review the catalytic activity, selectivity and stability for enhanced yield of H2O2. From revision of last two decade’s literature including experimental and theoretical data;we argue that successful implementation of electrochemical H2O2 production can be realized on the basis of stable, active and selective catalyst.展开更多
The extraction of uranyl nitrate by novel extractants of N,N-dimethyl-N',N'-dioctylsuccinylamide(DMDOSA)and N,N-dimethyl-N',N'-didecylsuccinylamide(DMDDSA) from aqueous nitric/nitrate solutions was inv...The extraction of uranyl nitrate by novel extractants of N,N-dimethyl-N',N'-dioctylsuccinylamide(DMDOSA)and N,N-dimethyl-N',N'-didecylsuccinylamide(DMDDSA) from aqueous nitric/nitrate solutions was investigated.It was found both the concentration of HNO_3 and extractants had an effect on the U(Ⅵ) extraction distribution.The extraction mechanism was established,and stoichiometry of the main extracted species was confirmed to be UO_2(NO_3)_2·2DMDOSA and UO_2(NO_3)_2·2DMDDSA,respectively.Both of the extraction reactions are exothermic.FTIR spectral study of the U(Ⅵ) extracted species was also made.展开更多
The flotation ofniobite, fersmite, and ilmenorutile was studied using 3 collectors with various concentration and pulp pH. The collecting property of different representative collectors was investigated. Experimental ...The flotation ofniobite, fersmite, and ilmenorutile was studied using 3 collectors with various concentration and pulp pH. The collecting property of different representative collectors was investigated. Experimental results show that diphosphonic acid is an effective collector for valuable niobium-containing minerals. A flotation recovery of 90.87%-91.7% is obtained with 75 mg/L diphosphonic acid at pH 2-4. The chemical adsorption of diphosphonic acid on these 3 minerals' surface might lead to the high recovery efficiency of the minerals, which is proved by IR and X-ray photoelectron spectroscopy spectra.展开更多
Developing non‐noble‐metal electrocatalyst with efficient and durable activity is a urgent task for addressing the sluggish reaction kinetics of electrochemical water oxidation.Structural evolution of the electrocat...Developing non‐noble‐metal electrocatalyst with efficient and durable activity is a urgent task for addressing the sluggish reaction kinetics of electrochemical water oxidation.Structural evolution of the electrocatalyst is an important strategy for achieving enhanced performance.Herein,in situ evolution of surface Co_(2)CrO_(4) to CoOOH/CrOOH(CoOOH/CrOOH‐Co_(2)CrO_(4))by an electrochemical method under alkaline conditions was designed for enhancing the electrocatalytic performance of water oxidation.The experiments demonstrated that the synergy between CoOOH/CrOOH and Co_(2)CrO_(4) resulted in a marked increase in the number of active sites and improved the rate of charge transfer,which enhanced the activity for water oxidation.At a geometrical current density of 20 mA cm^(−2),the overpotential of the oxygen evolution reaction was 244 mV and the turnover frequency was 0.536 s^(−1) in 1.0 M NaOH.展开更多
The reaction of PtCl2(PPh3)2 with closo-[B10H10]^2- in t-BuOH under reflux (70 h) unexpectedly afforded the nido 11-vertex platinaborane [(PPh3)2PtB 10H10-9,10-(H0.7Cl0.3)2] 1, which was characterized by singl...The reaction of PtCl2(PPh3)2 with closo-[B10H10]^2- in t-BuOH under reflux (70 h) unexpectedly afforded the nido 11-vertex platinaborane [(PPh3)2PtB 10H10-9,10-(H0.7Cl0.3)2] 1, which was characterized by single-crystal X-ray diffraction study. Crystallographic data for 1: C36H41.40B10Cl0.60P2Pt, Mr = 860.49, triclinic system, space group P1, a = 11.255(2), b = 11.623(2), c = 17.148(3)A, α = 81.012(2), β = 88.115(3), γ=64.322(2)°, V= 1995.4(7)A^3, Z= 2, Dc = 1.432 g/cm^3, μ(MoKα) = 3.662 mm^-1, F(000) = 851, R = 0.0358 and wR = 0.0951. Compound 1 has a nido 11-vertex {PtB10} polyhedral skeleton with the Pt atom lying in the open PtB4 face and further ligating to two PPh3 ligands. 1 is partially chlorinated at positions B(9) and B(10), and for each chlorine atom an occupancy factor of 0.3 is given by crystallography.展开更多
To study the adsorption behavior of Cu^+ in aqueous solution on semiconductor surface, the interactions of Cu^+ and hydrated Cu^+ cations with the clean Si(111) surface were investigated via hybrid density functi...To study the adsorption behavior of Cu^+ in aqueous solution on semiconductor surface, the interactions of Cu^+ and hydrated Cu^+ cations with the clean Si(111) surface were investigated via hybrid density functional theory(B3LYP) and Moller-Plesset second-order perturbation(MP2) method. The clean Si(111) surface was described with cluster models(Si14H17, Si16H20 and Si22H21) and a four-silicon layer slab under periodic boundary conditions. Calculation results indicate that the bonding nature of adsorption of Cu^+ on Si surface can be viewed as partial covalent as well as ionic bonding. The binding energies between hydrated Cu^+ cations and Si(111) surface are large, suggesting a strong interaction between them. The coordination number of Cu^+(H2O)n on Si(111) surface was found to be 4. As the number of water molecules is larger than 5, water molecules form a hydrogen bond network. In aqueous solution, Cu^+ cations will safely attach to the clean Si(111) surface.展开更多
基金supported by National Science Foundation of China(No.52201254)Natural Science Foundation of Shandong Province(Nos.ZR2020MB090,ZR2020MB027,and ZR2020QE012)+1 种基金the project of“20 Items of University”of Jinan(No.202228046)the Taishan Scholar Project of Shandong Province(No.tsqn202306226)。
文摘The stacking and aggregation of graphene nanosheets have been obstacles to their application as electrode materials for microelectronic devices.This study deploys a one-step,scalable,facile electrochemical exfoliation technique to fabricate nitrogen(N)and chlorine(Cl)co-doped graphene nanosheets(i.e.,N-Cl-G)via the application of constant voltage on graphite in a mixture of 0.1 mol/L H_(2)SO_(4)and 0.1 mol/L NH_(4)Cl without using dangerous and exhaustive operation.The introduction of Cl(with its large radius)and N,both with high electrical negativity,facilitates the modulation of the electronic structure of graphene and creation of rich structural defects in it.Consequently,in the as-constructed supercapacitors,N-Cl-G exhibits a high specific capacitance of 77 F/g at 0.2 A/g and remarkable cycling stability with 91.7%retention of initial capacitance after 20,000 cycles at 10 A/g.Furthermore,a symmetrical supercapacitor assembled with N-Cl-G as the positive and negative electrodes(denoted as N-Cl-G//N-Cl-G)exhibits an energy density of 3.38 Wh/kg at a power density of 600 W/kg and superior cycling stability with almost no capacitance loss after 5000 cycles at 5 A/g.This study provides a scalable protocol for the facile fabrication of high-performance co-doped graphene as an electrode material candidate for supercapacitors.
基金supported by the National Research Foundation(NRF)grants(2022R1A4A1032832 and 2019R1A6A1A10073079)funded by the Korean government(MSIT)
文摘Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The layered cathode materials of ZIBs hold a stable structure during charge and discharge reactions owing to the ultrafast and straightforward(de)intercalation-type storage mechanism of Zn^(2+)ions in their tunable interlayer spacing and their abilities to accommodate other guest ions or molecules.Nevertheless,the challenges of inadequate energy density,dissolution of active materials,uncontrollable byproducts,increased internal pressure,and a large de-solvation penalty have been deemed an obstacle to the development of ZIBs.In this review,recent strategies on the structure regulation of layered materials for aqueous zinc-ion energy storage devices are systematically summarized.Finally,critical science challenges and future outlooks are proposed to guide and promote the development of advanced cathode materials for ZIBs.
基金This research was supported by the Science Foundation of China University of Petroleum-Beijing(No.2462023QNXZ002)the National Key R&D Program of China(2021YFA1501201)+2 种基金the National Natural Science Foundation of China(No.22278174)Independent research project of State Key Laboratory of heavy oil(2021–01)Shandong Excellent Young Scientists Fund Program(Overseas,2022HWYQ-082).
文摘A novel composite material(TD)composed of TS-1 microcrystalline and dendritic mesoporous silica nanospheres(DMSNs)was successfully prepared.The TD composite material had open pore structure and large specific surface area,which was conducive to the mass transfer of reactants and products.The Ti element in TS-1 could be used as an electron assistant,and the spillover d-electrons were conducive to the improvement of the sulfidation and dispersion of MoS_(2),thereby forming more type II MoS_(2) active phases.The incorporation of Ti could bring more Brønsted(B)and Lewis(L)acid,which was conducive to the hydrogenation pathway(HYD)selectivity(41.2%)of dibenzothiophene(DBT)hydrodesulfurization(HDS)and isomerization(ISO)route selectivity(21.9%)of 4,6-dimethyldibenzothiophene(4,6-DMDBT)HDS,thus improve the HDS activity of DBT and 4,6-DMDBT.NiMo/TD-70(Aging temperature=70℃)had the best HDS activities of DBT(99.0%)and 4,6-DMDBT(93.7%)due to its large open pore structure,good acidity,suitable metal-support interaction(MSI)and perfect dispersion of the metallic active sites.
基金This work was supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘Using clean solar energy to reduce CO_(2)into value-added products not only consumes the over-emitted CO_(2)that causes environmental problems,but also generates fuel chemicals to alleviate energy crises.The photocatalytic CO_(2)reduction reaction(PCO_(2)RR)relies on the semiconductor photocatalysts that suffer from high recombination rate of the photo-generated carriers,low light harvesting capability,and low stability.This review explores the recent discoveries on the novel semiconductors for PCO_(2)RR,focusing on the rational catalyst design strategies(such as surface engineering,band engineering,hierarchical structure construction,single-atom catalysts,and biohybrid catalysts)that promote the catalytic performance of semiconductor catalysts on PCO_(2)RR.The advanced characterization techniques that contribute to understanding the intrinsic properties of the photocatalysts are also discussed.Lastly,the perspectives on future challenges and possible solutions for PCO_(2)RR are presented.
基金Supported by the National Science & Technology Pillar Program(082603101c) China Postdoctoral Science Foundation (O92623101H)+2 种基金 Shandong Postdoctoral Foundation(200902040) Open Project Program of Marine Corrosion and Protection Research Center of Institute of Oceanology Chinese Academy of Science(200901005) Doctor Foundation of University of Jinan(XBS0899)
文摘The inhibiting effect of ciprofloxacin,norfloxacin and ofloxacin on the corrosion of mild steel in 1 mol·L-1 HCl and the mechanism were studied at different temperatures using mass loss measurement,electrochemical method,and X-ray photoelectron spectroscopy(XPS) .Effective inhibition was shown by mass loss,potentiodynamic polarization and impedance spectroscopy measurement.The corrosion rate of the metal in the mass loss measurement,and the corrosion reaction on cathode and anode in the electrochemical measurement were accelerated when temperature was increased.XPS results showed that the inhibitors adsorbed effectively on the metal surface.
基金supported by the National Natural Science Foundation of China (Nos.51274104,50874052)the National Basic Research Program of China (No.2011CB933700)。
文摘A continuous online in situ attenuated total reflection Fourier-transform infrared(ATR-FTIR)spectroscopic technique was used to investigate the adsorption and desorption kinetics of heptyl xanthate(KHX)on the surface of ZnO and Cu(Ⅱ)activated ZnO.The results showed that Cu(Ⅱ)facilitated the xanthate adsorption process on the surface,and led to the formation of cuprous xanthate(CuX),dixanthogen(X_(2))and xanthate aggregates.The adsorption of xanthate on the surface of ZnO and Cu(Ⅱ)activated ZnO was found to both follow the pseudo-first-order kinetic model.When the NaOH solution was used as a desorption agent,the adsorbed xanthate can largely be removed due to the competition between OH^(−)and HX−.However,for Cu(Ⅱ)activated ZnO,the peak intensities at 1197 and 1082 cm^(−1) had no obvious weakening,and the absorption intensities at 1261 and 1026 cm^(−1) increased in the first 5 min,indicating an ion-exchange reaction between OH^(−)and surface zinc bonded xanthate HX−and the reorganization of adsorbed xanthate.
基金supported by the National Natural Science Foundation of China(No.51102114)
文摘The mechanism of cycloaddition reaction between singlet state H2Ge=Ge: and acetaldehyde has been investigated with the MP2/6-311++G** method. From the potential energy profile, it could be predicted that the reaction has two competitive dominant reaction pathways. The reaction rule presented is that the two reactants firstly form a four-membered Ge-heterocyclic ring germylene through the [2+2] cycloaddition reaction. As the 4p unoccupied orbital of Ge: atom in the four-membered Ge-heterocyclic ring germylene and the π orbital of acetaldehyde form a π→p donor-acceptor bond, the four-membered Ge-heterocyclic ring germylene further combines with acetaldehyde to give an intermediate. Because the Ge atom in intermediate exhibits sp3 hybridization after transition state, the intermediate isomerizes to a spiro-Ge-heterocyclic ring compound via a transition state. Simultaneously, the ring strain of the four-membered Ge-heterocyclic ring germylene makes it isomerize to a twisted four-membered ring product.
基金supported by the National Natural Science Foundation of China(No.51102114)
文摘X2Si=Ge: (X = H, Me, F, CI, Br, Ph, Ar...) is a new species. Its cycloaddition reaction is a new area for the study of germylene chemistry. The mechanism of cycloaddition reaction between singlet state Me2Si=Ge: and formaldehyde has been investigated with the CCSD(T)//MP2/cc-pvtz method. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rule presented is that the two reactants first form a four-membered Si-heterocyclic ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge: atom in the four-membered Si-heterocyclic ring germylene and the π orbital of formaldehyde form a π→p donor-acceptor bond, the four-membered Si-heterocyclic ring germylene further combines with formaldehyde to form an intermediate. Because the Ge atom in the intermediate undergoes sp^3 hybridization after transition state, then the intermediate isomerizes to a spiro-Ge-heterocyclic ring compound involving Si via a transition state. The research result indicates the laws of cycloaddition reaction between HzSi=Ge: and formaldehyde. It has important reference value for the cycloaddition reaction between X2Si=Ge: (X = H, Me, F, CI, Br, Ph, Ar…) and asymmetric to-bonded compounds, which is significant for the synthesis of small-ring and spiro-Ge-heterocyclic compounds involving Si. The study extends research area and enriches the research content of germylene chemistry.
文摘The mechanism of cycloaddition reaction between singlet silylene carbene and acetone has been investigated with CCSD(T)//MP2/6-31G method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. One consists of two steps: (1) the two reactants (R1, R2) firstly form a four-membered ring intermediate (INT4) through a barrier-free exothermic reaction of 585.9 kJ/mol; (2) Then intermediate (INT4) isomerizes to CH3-transfer product (P4.1) via a transition state (TS4.1) with energy barrier of 5.3 kJ/mol. The other is as follows: on the basis of intermediate (INT4) created between R1 and R2, intermediate (INT4) further reacts with acetone (R2) to form the intermediate (INT5) through a barrier-free exothermic reaction of 166.3 kJ/mol; Then, intermediate (INT5) isomerizes to a silicic bis-heterocyclic product (P5) via a transition state (TS5), for which the barrier is 54.9 kJ/mol. The presented rule of this reaction: the [2+2] cycloaddition effect between the π orbital of silylene carbene and the π orbital of π-bonded compounds leads to the formation of a four-membered ring intermediate (INT4); The unsaturated property of C atom from carbene in the four-membered ring intermediate (INT4) results in the generation of CH3-transfer product (P4.1) and silicic bis-heterocyclic compound (P5).
基金supported by the National Natural Science Foundation of China(No.51102114)
文摘The X2Ge=Si: (X = H, Me, F, reaction is a new area for the study of silylene between singlet CI2Ge=Si: and formaldehyde CI, Br, Ph, At...) is a new species. Its cycloaddition chemistry. The mechanism of cycloaddition reaction has been investigated with CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The reaction rule presented is that the two reactants firstly form a four-membered Ge-heterocyclic ring silylene through the [2+2] cycloaddition reaction. Owing to the 3p unoccupied orbital of Si: atom in the four-membered Ge-heterocyclic ring silylene and the π orbital of formaldehyde forming a π-p donor-acceptor bond, the four-membered Ge-heterocyclic ring silylene further combines with formaldehyde to form an intermediate. Because the Si: atom in intermediate shows sp3 hybridization after transition state, the intermediate isomerizes to a spiro-Si-heterocyclic ring compound involving Ge via a transition state. Simultaneously, the ring strain of the four-membered Ge-heterocyclic ring silylene makes it isomerize to a twisted four-membered ring product. The research result indicates the laws of cycloaddition reaction between X2Ge=Si: (X = H, Me, F, C1, Br, Ph, Ar...) and the asymmetric g-bonded compounds, which are significant for the synthesis of small-ring and spiro-Si-heterocyclic ring compound involving Ge The study extends the research area and enriches the research content of silvlene chemistrv.
基金Supported by the National Natural Science Foundation of China(No.21301069)the Natural Science Foundation of Shandong Province(No.ZR2012BQ004)
文摘A new coordination complex [In(pda)1.5(bpy)]n (1, H2pda = 1,4-phenylenediacetic acid, bpy = 2,2'-bipyridine) has been synthesized under hydrothermal conditions and characterized by IR spectrum, elemental analysis, PXRD and single-crystal X-ray diffraction analysis. Crystal data for the title complex are as follows: monoclinic system, space group P21/n with a = 11.8015(7), b = 15.9551(10), c = 11.8858(8)A^°, β = 94.844(6)°, V = 2230.0(2) A^°3, Mr = 559.25, Z = 4, F(000) = 1124, Dc = 1.666 g/cm^3, μ(MoKα) = 1.106 mm^-1, R = 0.0269 and wR = 0.0569 for 4534 observed reflections with I 〉 2σ(I). Complex 1 displays a 3D supermolecular structure based on the 1D zizag chains. Fluorescence spectrum measurement indicates that complex 1 shows strong fluorescence emission with a maximum peak at 447 nm in the solid state at room temperature.
基金supported by the National Natural Science Foundation of China(No.51102114)
文摘X2Si=Sn:(X = H, Me, F, Cl, Br, Ph, Ar…) are new species of chemistry. The cycloaddition reaction of X2Si=Sn: is a new study field of stannylene chemistry. To explore the rules of cycloaddition reaction between X2Si=Sn: and the symmetric p-bonded compounds, the cycloaddition reactions of Cl2Si=Sn: and ethylene were selected as model reactions in this paper.The mechanism of cycloaddition reaction between singlet Cl2Si=Sn: and ethylene has been first investigated with the MP2/GENECP(C, H, Cl, Si in 6-311++G**;Sn in LanL2dz) method in this paper. From the potential energy profile, it could be predicted that the reaction has one dominant reaction channel. The reaction rule presented is that the 5p unoccupied orbital of Sn in Cl2Si=Sn: and the π orbital of ethylene forming a p→p donor-acceptor bond, resulting in the formation of an intermediate. Instability of the intermediate makes it isomerize to a four-membered Si-heterocyclic ring stannylene. Because the 5p unoccupied orbital of Sn atom in the four-membered Si-heterocyclic ring stannylene and the π orbital of ethylene form a p→p donor-acceptor bond, the four-membered Si-heterocyclic ring stannylene further combines with ethene to form another intermediate. Because the Sn atom in the intermediate shows sp3 hybridization after transition state, the intermediate isomerizes to a Si-heterocyclic spiro-Sn-heterocyclic ring compound. The research result indicates the laws of cycloaddition reaction between X2Si=Sn: and the symmetric π-bonded compounds. The study opens up a new research field for stannylene chemistry.
基金Supported by the National Natural Science Foundation of China(No.21301069)the Natural Science Foundation of Shandong Province(No.ZR2012BQ004)
文摘A new coordination complex [Cd(pda)(pyz)(H2O)2]n(1, H2 pda = 1,4-phenylenediacetic acid, pyz = pyrazine) have been synthesized and structurally characterized. Crystal data for the title complex are as follows: orthorhombic system, space group Ccmb with a = 11.5245(3) b = 19.5069(5) c = 11.4231(3) A, V = 2568.00(12) A3, Mr = 188.31, Z = 16, F(000) = 1480, Dc = 1.948 g/cm3, μ(Mo Kα) = 1.725 mm-1, R = 0.0195 and w R = 0.0462 for 1357 observed reflections with I 】 2σ(I). In the title complex, the central Cd(II) ion is located in a distorted octahedral coordination environment. Two Cd(II) ions are bridged by two pda2- ligands and one pyz ligand to form a bi-loop structure. Luminescent property of the complex has also been studied.
基金supported by the National Natural Science Foundation of China(No.21808079,21878330 and 21676298)Key Research and Development Program of Shandong Province(No.2019GSF109115)+2 种基金the National Science and Technology Major Project,the CNPC Key Research Project(2016E-0707)the King Abdullah University of Science and Technology(KAUST) Office of Sponsored Research(OSR) under Award(No.OSR-2019-CPF-4103.2)the Project of National Key R&D Program of China(2019YFC1907700)。
文摘Metal confinement catalyst Mo S_(2)/Pt@TD-6%Ti(TD,TS-1/Dendritic mesoporous silica nanoparticles composite) in dendritic hierarchical pore structures was synthesized and showed excellent sulfur-resistance performance and stabilities in catalytic hydrodesulfurization reactions of probe sulfide molecules.The Mo S_(2)/Pt@TD-6%Ti catalyst combines the concepts of Pt-confinement effect and hydrogen spillover of Pt noble metal.The modified micropores of Mo/Pt@TD-6%Ti only allow the migration and dissociation of small H_(2) molecules(0.289 nm),and effectively keep the sulfur-containing compounds(e.g.H_(2)S,0.362 nm) outside.Thus,the Mo S_(2)/Pt@TD-6%Ti catalyst exhibits higher DBT and 4,6-DMDBT HDS activities because of the synergistic effect of the strong H_(2) dissociation ability of Pt and desulfurization ability of Mo S_(2) with a lower catalyst cost.This new concept combining H2dissociation performance of noble metal catalyst with the desulfurization ability of transition metal sulfide Mo S_(2) can protect the noble metal catalyst avoiding deactivation and poison,and finally guarantee the higher activities for DBT and 4,6-DMDBT HDS.
基金supported by the National Natural Science Foundation of China(21705056)the Young Taishan Scholars Program(tsqn201812080)+1 种基金the Natural Science Foundation of Shandong Province(ZR2019YQ10,ZR2017MB022,ZR2018BB057,ZR2018PB009)the Open Funds of the State Key Laboratory of Electroanalytical Chemistry(SKLEAC201901).
文摘Hydrogen peroxide (H2O2), first synthesized in 1818 through the acidification of barium peroxide (BaO2) with nitric acid, is a clear and colorless liquid which is entirely miscible with water and variety of organic solvents such as carboxylic acid and esters. Anthraquinone process (an old production process of H2O2), a batch process carried out in large facilities is an energy demanding process that requires large facilities, and involves oxidation of anthraquinone molecules and sequential hydrogenation. Moreover, the direct synthesis method enables production in a continuous mode as well as it permits small scale, decentralized production. Many drawbacks associated with these processes such as, energetic inefficiency and inherent disadvantages have motivated researchers, industry and academia to find out alternative for synthesis of H2O2. Electrochemical route based on catalyst selectively reduce oxygen to hydrogen peroxide. O2 is cathodically reduced to produce H2O2 via 2-electron pathway or 4-electron pathway to get H2O. Electrolysis of water has an important place in storage and electrochemical energy conversion process where problem is to choose a sufficiently stable and active electrode for anodic oxygen evolution reaction. Most commonly used catalysts on the cathode are carbon based materials such as carbon black, carbon nanotubes, graphite, carbon sponge, and carbon fiber. In perspective of expanding demand of production and usage of hydrogen peroxide we review the past literature to summarize different production processes of H2O2. In this review, we mainly focus on electrochemical production of hydrogen peroxide along with other alternatives, such as anthraquinone method for industrial H2O2 production and direct synthesis process. We also review the catalytic activity, selectivity and stability for enhanced yield of H2O2. From revision of last two decade’s literature including experimental and theoretical data;we argue that successful implementation of electrochemical H2O2 production can be realized on the basis of stable, active and selective catalyst.
基金supported by the National Natural Science Foundation of China(Nos.21077044 and 21171069)
文摘The extraction of uranyl nitrate by novel extractants of N,N-dimethyl-N',N'-dioctylsuccinylamide(DMDOSA)and N,N-dimethyl-N',N'-didecylsuccinylamide(DMDDSA) from aqueous nitric/nitrate solutions was investigated.It was found both the concentration of HNO_3 and extractants had an effect on the U(Ⅵ) extraction distribution.The extraction mechanism was established,and stoichiometry of the main extracted species was confirmed to be UO_2(NO_3)_2·2DMDOSA and UO_2(NO_3)_2·2DMDDSA,respectively.Both of the extraction reactions are exothermic.FTIR spectral study of the U(Ⅵ) extracted species was also made.
文摘The flotation ofniobite, fersmite, and ilmenorutile was studied using 3 collectors with various concentration and pulp pH. The collecting property of different representative collectors was investigated. Experimental results show that diphosphonic acid is an effective collector for valuable niobium-containing minerals. A flotation recovery of 90.87%-91.7% is obtained with 75 mg/L diphosphonic acid at pH 2-4. The chemical adsorption of diphosphonic acid on these 3 minerals' surface might lead to the high recovery efficiency of the minerals, which is proved by IR and X-ray photoelectron spectroscopy spectra.
文摘Developing non‐noble‐metal electrocatalyst with efficient and durable activity is a urgent task for addressing the sluggish reaction kinetics of electrochemical water oxidation.Structural evolution of the electrocatalyst is an important strategy for achieving enhanced performance.Herein,in situ evolution of surface Co_(2)CrO_(4) to CoOOH/CrOOH(CoOOH/CrOOH‐Co_(2)CrO_(4))by an electrochemical method under alkaline conditions was designed for enhancing the electrocatalytic performance of water oxidation.The experiments demonstrated that the synergy between CoOOH/CrOOH and Co_(2)CrO_(4) resulted in a marked increase in the number of active sites and improved the rate of charge transfer,which enhanced the activity for water oxidation.At a geometrical current density of 20 mA cm^(−2),the overpotential of the oxygen evolution reaction was 244 mV and the turnover frequency was 0.536 s^(−1) in 1.0 M NaOH.
基金supported by University of Jinan (B0605)Key Subject Research Foundation of Shandong Province (XTD 0704)
文摘The reaction of PtCl2(PPh3)2 with closo-[B10H10]^2- in t-BuOH under reflux (70 h) unexpectedly afforded the nido 11-vertex platinaborane [(PPh3)2PtB 10H10-9,10-(H0.7Cl0.3)2] 1, which was characterized by single-crystal X-ray diffraction study. Crystallographic data for 1: C36H41.40B10Cl0.60P2Pt, Mr = 860.49, triclinic system, space group P1, a = 11.255(2), b = 11.623(2), c = 17.148(3)A, α = 81.012(2), β = 88.115(3), γ=64.322(2)°, V= 1995.4(7)A^3, Z= 2, Dc = 1.432 g/cm^3, μ(MoKα) = 3.662 mm^-1, F(000) = 851, R = 0.0358 and wR = 0.0951. Compound 1 has a nido 11-vertex {PtB10} polyhedral skeleton with the Pt atom lying in the open PtB4 face and further ligating to two PPh3 ligands. 1 is partially chlorinated at positions B(9) and B(10), and for each chlorine atom an occupancy factor of 0.3 is given by crystallography.
基金Supported by the National Natural Science Foundation of China(No.20633060)
文摘To study the adsorption behavior of Cu^+ in aqueous solution on semiconductor surface, the interactions of Cu^+ and hydrated Cu^+ cations with the clean Si(111) surface were investigated via hybrid density functional theory(B3LYP) and Moller-Plesset second-order perturbation(MP2) method. The clean Si(111) surface was described with cluster models(Si14H17, Si16H20 and Si22H21) and a four-silicon layer slab under periodic boundary conditions. Calculation results indicate that the bonding nature of adsorption of Cu^+ on Si surface can be viewed as partial covalent as well as ionic bonding. The binding energies between hydrated Cu^+ cations and Si(111) surface are large, suggesting a strong interaction between them. The coordination number of Cu^+(H2O)n on Si(111) surface was found to be 4. As the number of water molecules is larger than 5, water molecules form a hydrogen bond network. In aqueous solution, Cu^+ cations will safely attach to the clean Si(111) surface.