期刊文献+
共找到6,885篇文章
< 1 2 250 >
每页显示 20 50 100
Role of methoxy and C_(α)-based substituents in electrochemical oxidation mechanisms and bond cleavage selectivity of β-O-4 lignin model compounds 被引量:1
1
作者 Yang Zhou Qiang Zeng +3 位作者 Hongyan He Kejia Wu Fuqiao Liu Xuehui Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期114-125,共12页
In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro... In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations. 展开更多
关键词 Lignin model compounds β-O-4 dimers Electrochemical oxidation Oxidation mechanisms Substituent effect
下载PDF
Rational design of F,N-rich artificial interphase via chemical prelithiation initiation strategy enabling high coulombic efficiency and stable micro-sized SiO anodes
2
作者 Quanyan Man Hengtao Shen +3 位作者 Chuanliang Wei Baojuan Xi Shenglin Xiong Jinkui Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期224-232,共9页
Silicon monoxide(SiO)is regarded as a potential candidate for anode materials of lithium-ion batteries(LIBs).Unfortunately,the application of SiO is limited by poor initial Coulombic efficiency(ICE)and unsteady solid ... Silicon monoxide(SiO)is regarded as a potential candidate for anode materials of lithium-ion batteries(LIBs).Unfortunately,the application of SiO is limited by poor initial Coulombic efficiency(ICE)and unsteady solid electrolyte interface(SEI),which induce low energy,short cycling life,and poor rate properties.To address these drawbacks of SiO,we achieve in-situ construction of robust and fast-ion conducting F,N-rich SEI layer on prelithiated micro-sized SiO(P-μSiO)via the simple and continuous treatment ofμSiO in mild lithium 4,4′-dimethylbiphenyl solution and nonflammable hexafluorocyclotriphosphazene solution.Chemical prelithiation eliminates irreversible capacity through pre-forming inactive lithium silicates.Meanwhile,the symbiotic F,N-rich SEI with good mechanical stability and fast Li^(+)permeability is conductive to relieve volume expansion ofμSiO and boost the Li+diffusion kinetics.Consequently,the P-μSiO realizes an impressive electrochemical performance with an elevated ICE of 99.57%and a capacity retention of 90.67%after 350 cycles.Additionally,the full cell with P-μSiO anode and commercial LiFePO_(4) cathode displays an ICE of 92.03%and a high reversible capacity of 144.97 mA h g^(-1).This work offers a general construction strategy of robust and ionically conductive SEI for advanced LIBs. 展开更多
关键词 Chemical prelithiation Silicon monoxide SEI Lithium-ion batteries INTERPHASE engineering
下载PDF
FCF-LDH/BiVO_(4)with synergistic effect of physical enrichment and chemical adsorption for efficient reduction of nitrate
3
作者 Yajie Bai Zhenyuan Fang +5 位作者 Yong Lei Lijing Liu Huaiquan Zhao Hongye Bai Weiqiang Fan Weidong Shi 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1112-1121,共10页
Photoelectrochemical NO_(3)^(-)reduction(PEC NITRR)not only provides a promising solution for promoting the global nitrogen cycle,but also converts NO_(3)^(-)to the important chemicals(NH_(3)).However,it is still a gr... Photoelectrochemical NO_(3)^(-)reduction(PEC NITRR)not only provides a promising solution for promoting the global nitrogen cycle,but also converts NO_(3)^(-)to the important chemicals(NH_(3)).However,it is still a great challenge to prepare catalysts with excellent NO_(3)^(-)adsorption/activation capacity to achieve high NITRR.Herein,we designed a novel Fe^(2+)~Cu^(2+)Fe^(3+)LDH/BiVO_(4)(FCF-LDH/BVO)catalyst with synergistic effect of chemical adsorption and physical enrichment.Fe^(2+)in FCF-LDH/BVO provides the rich Lewis acid sites for the adsorption of NO_(3)^(-),and the appropriate layer spacing of FCF-LDH further promotes the physical enrichment of NO_(3)^(-)in its interior,thus realizing the effective contact between NO_(3)^(-)and active sites(Fe^(2+)).FCF-LDH/BVO showed excellent NH_(3)production performance(FE_(NH_(3))=66.1%,r_(NH_(3))=13.8μg h^(-1)cm^(-2))and selectivity(FE_(NO_(2)^(-))=2.5%,r_(NO_(2)^(-))=4.9μg h^(-1)cm^(-2))in 0.5 mol L^(-1)Na_(2)SO_(4)electrolyte.In addition,FCF-LDH/BVO maintains the desirable PEC stability for six cycle experiments,showing great potential for practical application.The^(14)NO_(3)^(-)and^(15)NO_(3)^(-)isotope test provides strong evidence for further verification of the origin of N in the generated NH_(3).This LDH catalyst has a great potential in PEC removal of NO_(3)^(-)from groundwater. 展开更多
关键词 LDH Lewis acid sites Physical enrichment Photoelectrochemical NO_(3)^(-)Reduction Ammonia
下载PDF
One-Step Scalable Fabrication of Nitrogen and Chlorine Co-doped Graphene by Electrochemical Exfoliation for High-Performance Supercapacitors
4
作者 Qian Li Hu Zheng +4 位作者 Binbin Liu Tianzhen Jian Wenqing Ma Caixia Xu Kai Wang 《Transactions of Tianjin University》 EI CAS 2024年第5期448-458,共11页
The stacking and aggregation of graphene nanosheets have been obstacles to their application as electrode materials for microelectronic devices.This study deploys a one-step,scalable,facile electrochemical exfoliation... The stacking and aggregation of graphene nanosheets have been obstacles to their application as electrode materials for microelectronic devices.This study deploys a one-step,scalable,facile electrochemical exfoliation technique to fabricate nitrogen(N)and chlorine(Cl)co-doped graphene nanosheets(i.e.,N-Cl-G)via the application of constant voltage on graphite in a mixture of 0.1 mol/L H_(2)SO_(4)and 0.1 mol/L NH_(4)Cl without using dangerous and exhaustive operation.The introduction of Cl(with its large radius)and N,both with high electrical negativity,facilitates the modulation of the electronic structure of graphene and creation of rich structural defects in it.Consequently,in the as-constructed supercapacitors,N-Cl-G exhibits a high specific capacitance of 77 F/g at 0.2 A/g and remarkable cycling stability with 91.7%retention of initial capacitance after 20,000 cycles at 10 A/g.Furthermore,a symmetrical supercapacitor assembled with N-Cl-G as the positive and negative electrodes(denoted as N-Cl-G//N-Cl-G)exhibits an energy density of 3.38 Wh/kg at a power density of 600 W/kg and superior cycling stability with almost no capacitance loss after 5000 cycles at 5 A/g.This study provides a scalable protocol for the facile fabrication of high-performance co-doped graphene as an electrode material candidate for supercapacitors. 展开更多
关键词 GRAPHENE Electrochemical exfoliation Supercapacitor NITROGEN CHLORINE
下载PDF
Advances of Electrochemical and Electrochemiluminescent Sensors Based on Covalent Organic Frameworks
5
作者 Yue Cao Ru Wu +2 位作者 Yan‑Yan Gao Yang Zhou Jun‑Jie Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期395-422,共28页
Covalent organic frameworks(COFs),a rapidly developing category of crystalline conjugated organic polymers,possess highly ordered structures,large specific surface areas,stable chemical properties,and tunable pore mic... Covalent organic frameworks(COFs),a rapidly developing category of crystalline conjugated organic polymers,possess highly ordered structures,large specific surface areas,stable chemical properties,and tunable pore microenvironments.Since the first report of boroxine/boronate ester-linked COFs in 2005,COFs have rapidly gained popularity,showing important application prospects in various fields,such as sensing,catalysis,separation,and energy storage.Among them,COFs-based electrochemical(EC)sensors with upgraded analytical performance are arousing extensive interest.In this review,therefore,we summarize the basic properties and the general synthesis methods of COFs used in the field of electroanalytical chemistry,with special emphasis on their usages in the fabrication of chemical sensors,ions sensors,immunosensors,and aptasensors.Notably,the emerged COFs in the electrochemiluminescence(ECL)realm are thoroughly covered along with their preliminary applications.Additionally,final conclusions on state-of-the-art COFs are provided in terms of EC and ECL sensors,as well as challenges and prospects for extending and improving the research and applications of COFs in electroanalytical chemistry. 展开更多
关键词 Covalent organic frameworks ELECTROCHEMISTRY ELECTROCHEMILUMINESCENCE SENSORS
下载PDF
Realizing efficient electrochemical oxidation of 5-hydroxymethylfurfural on a freestanding Ni(OH)_(2)/nickel foam catalyst
6
作者 Yunying Huo Cong Guo +6 位作者 Yongle Zhang Jingyi Liu Qiao Zhang Zhiting Liu Guangxing Yang Rengui Li Feng Peng 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期282-291,共10页
With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical c... With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical conversion of 5-hydroxymethylfurfural(HMF)to biofuels and value-added oxygenated commodity chemicals provides a promising and alternative pathway to convert re-newable electricity into chemicals.Although nickel-based eletrocatalysts are well-known for HMF oxidation,their relatively low intrinsic activity,poor conductivity and stability still limit the poten-tial applications.Here,we report the fabrication of a freestanding nickel-based electrode,in which Ni(OH)_(2) species were in-situ constructed on Ni foam(NF)support using a facile ac-id-corrosion-induced strategy.The Ni(OH)2/NF electrocatalyst exhibits stable and efficient electro-chemical HMF oxidation into 2,5-furandicarboxylic acid(FDCA)with HMF conversion close to 100% with high Faraday efficiency.In-situ formation strategy results in a compact interface between Ni(OH)_(2) and NF,which contributes to good conductivity and stability during electrochemical reac-tions.The superior performance benefits from dynamic cyclic evolution of Ni(OH)_(2) to NiOOH,which acts as the reactive species for HMF oxidation to FDCA.A scaled-up device based on a continu-ous-flow electrolytic cell was also established,giving stable operation with a high FDCA production rate of 27 mg h^(-1)cm^(−2).This job offers a straightforward,economical,and scalable design strategy to design efficient and durable catalysts for electrochemical conversion of valuable chemicals. 展开更多
关键词 Acid-corrosion-induced 5-HYDROXYMETHYLFURFURAL Electrocatalytic oxidation Ni electrocatalysis
下载PDF
Synergistic coupling among Mg_(2)B_(2)O_(5),polycarbonate and N,Ndimethylformamide enhances the electrochemical performance of PVDF-HFP-based solid electrolyte
7
作者 Yutong Jing Qiang Lv +8 位作者 Yujia Chen Bo Wang Bochen Wu Cheng Li Shengbo Yang Zhipeng He Dianlong Wang Huakun Liu Shixue Dou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期158-168,共11页
Polymer solid electrolytes(SPEs)based on the[solvate-Li+]complex structure have promising prospects in lithium metal batteries(LMBs)due to their unique ion transport mechanism.However,the solvation structure may compr... Polymer solid electrolytes(SPEs)based on the[solvate-Li+]complex structure have promising prospects in lithium metal batteries(LMBs)due to their unique ion transport mechanism.However,the solvation structure may compromise the mechanical performance and safety,hindering practical application of SPEs.In this work,a composite solid electrolyte(CSE)is designed through the organic-inorganic syner-gistic interaction among N,N-dimethylformamide(DMF),polycarbonate(PC),and Mg_(2)B_(2)O_(5) in poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP).Flame-retardant Mg_(2)B_(2)O_(5) nanowires provide non-flammability to the prepared CSEs,and the addition of PC improves the dispersion of Mg_(2)B_(2)O_(5) nanowires.Simultaneously,the organic-inorganic synergistic action of PC plasticizer and Mg_(2)B_(2)O_(5) nanowires pro-motes the dissociation degree of LiTFSI and reduces the crystallinity of PVDF-HFP,enabling rapid Li ion transport.Additionally,Raman spectroscopy and DFT calculations confirm the coordination between Mg atoms in Mg_(2)B_(2)O_(5) and N atoms in DMF,which exhibits Lewis base-like behavior attacking adjacent C-F and C-H bonds in PVDF-HFP while inducing dehydrofluorination of PVDF-HFP.Based on the syner-gistic coupling of Mg_(2)B_(2)O_(5),PC,and DMF in the PVDF-HFP matrix,the prepared CSE exhibits superior ion conductivity(9.78×10^(-4) s cm^(-1)).The assembled Li symmetric cells cycle stably for 3900 h at a current density of 0.1 mA cm^(-2) without short circuit.The LFP||Li cells assembled with PDL-Mg_(2)B_(2)O_(5)/PC CSEs show excellent rate capability and cycling performance,with a capacity retention of 83.3%after 1000 cycles at 0.5 C.This work provides a novel approach for the practical application of organic-inorganic Synergistic CSEs in LMBs. 展开更多
关键词 Composite solid electrolytes Safe Li metal batteries Synergistic coupling effect Poly(vinylidene fluoride-co-hexafluoropro pylene)
下载PDF
Hydrogen-bonded organic framework modified separator for simultaneously enhancing the safety and electrochemical performance of Ni-rich lithium-ion battery
8
作者 Chengyu Han Yu Cao +9 位作者 Ming Yang Yuhan Wang Di Tang Shaojie Zhang Yiran Jia Yiming Zhang Hern Kim Fusheng Pan Zhongyi Jiang Jie Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期72-78,共7页
Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concern... Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concerns impede its practical viability.This work provides a hydrogen-bonded organic framework(HOF)modification strategy to simultaneously improve the electrochemical performance,thermal stability and incombustibility of separator.Melamine cyanurate(MCA),as a low-cost and reliable flame-retardant HOF,was implemented in the separator modification layer,which can prevent the battery short circuit even at a high temperature.In addition,the supermolecule properties of MCA provide unique physical and chemical microenvironment for regulating ion-transport behavior in electrolyte.The MCA coating layer enabled the nickel-rich layered oxide cathode with a high-capacity retention of 90.3%after 300 cycles at 1.0 C.Collectively,the usage of MCA in lithium-ion batteries(LIBs)affords a simple,low-cost and efficient strategy to improve the security and service life of nickel-rich layered cathodes. 展开更多
关键词 Hydrogen-bonded organic framework Modified separator Ni-richlayered oxide cathode Thermal runaway Li^(+)transference number
下载PDF
Machine learning with active pharmaceutical ingredient/polymer interaction mechanism:Prediction for complex phase behaviors of pharmaceuticals and formulations 被引量:2
9
作者 Kai Ge Yiping Huang Yuanhui Ji 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期263-272,共10页
The high throughput prediction of the thermodynamic phase behavior of active pharmaceutical ingredients(APIs)with pharmaceutically relevant excipients remains a major scientific challenge in the screening of pharmaceu... The high throughput prediction of the thermodynamic phase behavior of active pharmaceutical ingredients(APIs)with pharmaceutically relevant excipients remains a major scientific challenge in the screening of pharmaceutical formulations.In this work,a developed machine-learning model efficiently predicts the solubility of APIs in polymers by learning the phase equilibrium principle and using a few molecular descriptors.Under the few-shot learning framework,thermodynamic theory(perturbed-chain statistical associating fluid theory)was used for data augmentation,and computational chemistry was applied for molecular descriptors'screening.The results showed that the developed machine-learning model can predict the API-polymer phase diagram accurately,broaden the solubility data of APIs in polymers,and reproduce the relationship between API solubility and the interaction mechanisms between API and polymer successfully,which provided efficient guidance for the development of pharmaceutical formulations. 展开更多
关键词 Multi-task machine learning Density functional theory Hydrogen bond interaction MISCIBILITY SOLUBILITY
下载PDF
Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis 被引量:2
10
作者 Chao Wan Yu Liang +5 位作者 Liu Zhou Jindou Huang Jiapei Wang Fengqiu Chen Xiaoli Zhan Dang-guo Cheng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期333-343,共11页
The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for ... The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond. 展开更多
关键词 Ammonia borane Hydrogen generation HYDROLYSIS Cobalt phosphide nanosheets PHOTOCATALYSIS
下载PDF
The photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu_(2)(OH)_(2)CO_(3)for stable photocatalytic CO_(2)reduction 被引量:1
11
作者 Yaqing Zhi Haoning Mao +5 位作者 Guangxing Yang Qiao Zhang Zhiting Liu Yonghai Cao Siyuan Yang Feng Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期104-112,共9页
Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)... Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)R)systems.Herein,monoclinic Cu_(2)(OH)_(2)CO_(3)is firstly proven to be a new class of photocatalyst,which has excellent catalytic stability and selectivity for PCO_(2)R in the absence of any sacrificial agent and cocatalysts.Based on a Cu_(2)(OH)_(2)^(13)CO_(3)photocatalyst and 13CO_(2)two-sided^(13)C isotopic tracer strategy,and combined with in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)analysis and density functional theory(DFT)calculations,two main CO_(2)transformation routes,and the photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu_(2)(OH)_(2)CO_(3)are definitely revealed.The PCO_(2)R activity of Cu_(2)(OH)_(2)CO_(3)is comparable to some of state-of-the-art novel photocatalysts.Significantly,the PCO_(2)R properties can be further greatly enhanced by simply combining Cu_(2)(OH)_(2)CO_(3)with typical TiO_(2)to construct composites photocatalyst.The highest CO_(2)and CH_(4)production rates by 7.5 wt%Cu_(2)(OH)_(2)CO_(3)-TiO_(2)reach 16.4μmol g^(-1)h^(-1)and 116.0μmol g^(-1)h^(-1),respectively,which are even higher than that of some of PCO_(2)R systems containing sacrificial agents or precious metals modified photocatalysts.This work provides a better understanding for the PCO_(2)R mechanism at the atomic levels,and also indicates that basic carbonate photocatalysts have broad application potential in the future. 展开更多
关键词 CO_(2)photocatalytic reduction PHOTOCATALYSIS Basic copper carbonate SELF-RECONSTRUCTION PHOTOCATALYST
下载PDF
Manipulating Na occupation and constructing protective film of P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2) as long-term cycle stability cathode for sodium-ion batteries 被引量:1
12
作者 Yiran Sun Pengfei Zhou +7 位作者 Siyu Liu Zhongjun Zhao Yihao Pan Xiangyan Shen Xiaozhong Wu Jinping Zhao Junying Weng Jin Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期603-611,I0013,共10页
P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)(NNMO)is promising cathode material for sodium-ion batteries(SIBs)due to its high specific capacity and fast Na+diffusion rate.Nonetheless,the irreversible P2-O_(2)phase transformati... P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)(NNMO)is promising cathode material for sodium-ion batteries(SIBs)due to its high specific capacity and fast Na+diffusion rate.Nonetheless,the irreversible P2-O_(2)phase transformation,Na+/vacancy ordering,and transition metal(TM)dissolution seriously damage its cycling stability and restrict its commercialization process.Herein,Na occupation manipulation and interface stabilization are proposed to strengthen the phase structure of NNMO by synergistic Zn/Ti co-doping and introducing lithium difluorophosp(LiPO_(2)F_(2))film-forming electrolyte additive.The Zn/Ti co-doping regulates the occupancy ratio of Nae/Nafat Na sites and disorganizes the Na+/vacancy ordering,resulting in a faster Na+diffusion kinetics and reversible P2-Z phase transition for P2-Na_(0.67)Ni_(0.28)Zn_(0.05)Mn_(0.62)Ti_(0.05)O_(2)(NNZMTO).Meanwhile,the LiPO_(2)F_(2)additive can form homogeneous and ultrathin cathode-electrolyte interphase(CEI)on NNZMTO surface,which can stabilize the NNZMTO-electrolyte interface to prevent TM dissolution,surface structure transformation,and micro-crack generation.Combination studies of in situ and ex situ characterizations and theoretical calculations were used to elucidate the storage mechanism of NNZMTO with Li PO_(2)F_(2)additive.As a result,the NNZMTO displays outstanding capacity retention of 94.44%after 500 cycles at 1C with 0.3 wt%Li PO_(2)F_(2),excellent rate performance of 92.5 mA h g^(-1)at 8C with 0.1 wt%Li PO_(2)F_(2),and remarkable full cell capability.This work highlights the important role of manipulating Na occupation and constructing protective film in the design of layered materials,which provides a promising direction for developing high-performance cathodes for SIBs. 展开更多
关键词 Layered cathode Zn/Ti co-doping Na occupation Electrolyte additive Sodium-ion batteries
下载PDF
Compositional and Hollow Engineering of Silicon Carbide/Carbon Microspheres as High-Performance Microwave Absorbing Materials with Good Environmental Tolerance 被引量:1
13
作者 Lixue Gai Yahui Wang +5 位作者 Pan Wan Shuping Yu Yongzheng Chen Xijiang Han Ping Xu Yunchen Du 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期128-146,共19页
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M... Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications. 展开更多
关键词 SiC/C composites Compositional engineering Hollow engineering Microwave absorption Environmental tolerance
下载PDF
Effect of bubble morphology and behavior on power consumption in non-Newtonian fluids’aeration process 被引量:1
14
作者 Xiemin Liu Jing Wan +5 位作者 Jinnan Sun Lin Zhang Feng Zhang Zhibing Zhang Xinyao Li Zheng Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期243-254,共12页
Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate o... Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm. 展开更多
关键词 Non-Newtonian fluids aeration process Power consumption Volumetric mass transfer rate Bubble size
下载PDF
Synthesis and Modulation of Low-Dimensional Transition Metal Chalcogenide Materials via Atomic Substitution 被引量:1
15
作者 Xuan Wang Akang Chen +3 位作者 XinLei Wu Jiatao Zhang Jichen Dong Leining Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期49-94,共46页
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart... In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized. 展开更多
关键词 Transition metal chalcogenides Atomic substitution Ion exchange Low-dimensional materials Controllable synthesis
下载PDF
Insights into Nano-and Micro-Structured Scaffolds for Advanced Electrochemical Energy Storage 被引量:1
16
作者 Jiajia Qiu Yu Duan +4 位作者 Shaoyuan Li Huaping Zhao Wenhui Ma Weidong Shi Yong Lei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期187-230,共44页
Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical... Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy stor-age devices at all technology readiness levels.Due to various challenging issues,especially limited stability,nano-and micro-structured(NMS)electrodes undergo fast electrochemical performance degradation.The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement,even though it only occupies comple-mentary and facilitating components for the main mechanism.However,extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies.This review will aim at highlighting these NMS scaffold design strategies,summariz-ing their corresponding strengths and challenges,and thereby outlining the potential solutions to resolve these challenges,design principles,and key perspectives for future research in this field.Therefore,this review will be one of the earliest reviews from this viewpoint. 展开更多
关键词 Nano-and micro-structured Interconnected porous Scaffolds Electrode design Electrochemical energy storage
下载PDF
Self‑Assembly of Binderless MXene Aerogel for Multiple‑Scenario and Responsive Phase Change Composites with Ultrahigh Thermal Energy Storage Density and Exceptional Electromagnetic Interference Shielding 被引量:1
17
作者 Chuanbiao Zhu Yurong Hao +8 位作者 Hao Wu Mengni Chen Bingqing Quan Shuang Liu Xinpeng Hu Shilong Liu Qinghong Ji Xiang Lu Jinping Qu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期367-382,共16页
The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here... The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs. 展开更多
关键词 Self-assembly Multiple-scenario Phase change composites Thermal energy storage Electromagnetic interference shielding
下载PDF
The Al_(2)O_(3)and Mn/Al_(2)O_(3)sorbents highly utilized in destructive sorption of NF_(3)
18
作者 Yanfei Pan Hejian Li +1 位作者 Li Zheng Xiufeng Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期54-62,共9页
NF_(3)is commonly used as an etching and cleaning gas in semiconductor industry,however it is a strongly greenhouse gas.Therefore,the destruction of disposal NF_(3)is an urgent task to migrate the greenhouse effect.Am... NF_(3)is commonly used as an etching and cleaning gas in semiconductor industry,however it is a strongly greenhouse gas.Therefore,the destruction of disposal NF_(3)is an urgent task to migrate the greenhouse effect.Among the technologies for NF_(3)abatement,the destructive sorption of NF_(3)over metal oxides sorbents is an effective way.Thus,the search for a highly reactive and utilized sorbent for NF_(3)destruction is in great demand.In this work,AlOOH supported on carbon-sphere(AlOOH/CS)as precursors were synthesized hydrothermally and heat-treated to prepare the Al_(2)O_(3)sorbents.The influence of AlOOH/CS hydrothermal temperatures on the reactivity of derived Al_(2)O_(3)sorbents for NF_(3)destruction was investigated,and it is shown that the Al2O3 from AlOOH/CS hydro-thermalized at 120℃is superior to others.Subsequently,the optimized Al_(2)O_(3)was covered by Mn(OH)x to prepare Mn/Al_(2)O_(3)sorbents via changing hydrothermal temperatures and Mn loadings.The results show that the Mn/Al_(2)O_(3)sorbents are more utilized than bare Al_(2)O_(3)in NF_(3)destructive sorption due to the promotional effect of Mn_(2)O_(3)as surface layer on the fluorination of Al_(2)O_(3)as substrate,especially the optimal 5%Mn/Al2O3(160℃)exhibits a utilization percentage as high as 90.4%,and remarkably exceeds all the sorbents reported so far.These findings are beneficial to develop more efficient sorbents for the destruction of NF_(3). 展开更多
关键词 Greenhouse gas NF_(3)destructive sorption Sorbents Al_(2)O_(3) Mn/Al_(2)O_(3) REACTIVITY
下载PDF
An integrated technology for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment
19
作者 Kangrui Nie Ruize Shang +3 位作者 Fuming Miao Liuxiang Wang Youzhi Liu Weizhou Jiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期117-125,共9页
In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-g... In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2concentration on the absorption rate and amount of CO_(2)and the preparation of BaCO_(3)are investigated.The results reveal that the absorption rate and amount of CO_(2)follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-methyldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO_(2)absorption.The absorption rate and amount of CO_(2)under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO_(3)prepared in the rotating packed bed is in the range of 57.2—89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m^(2)·g^(-1)).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3).This study provides new insights into carbon emissions reduction and carbon utilization. 展开更多
关键词 High-gravity technology Wet absorption CO_(2)capture Enhanced mass transfer CO_(2)utilization Barium carbonate
下载PDF
Solubility determination and comparison ofβ-HMX and RDX in two binary mixed solvents(acetonitrile+water,nitric acid+water)
20
作者 Yuehua Yao Fan Wang +3 位作者 Yinguang Xu Zishuai Xu Lizhen Chen Jianlong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期238-249,共12页
In order to remove hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX),the main impurity,in process of polymorphic transformation of octrahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),the solubility ofβ-HMX and RDX in a... In order to remove hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX),the main impurity,in process of polymorphic transformation of octrahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),the solubility ofβ-HMX and RDX in acetonitrile(ACN)+water in the temperature range of 288.15-333.15 K and in nitric acid(HNO_(3))+water in the temperature range of 298.15-333.15 K were measured by laser dynamic method.The results showed that the solubility of bothβ-HMX and RDX in binary mixed solvents increased monotonously as the temperature increase at a given solvent composition or with increasing of mole fraction of solvent(ACN and nitric acid).Solubility data were well correlated by the modified Apelblat equation,Jouyban-Acree model,Yaws equation and van't Hoff equation,and the Yaws equation achieved the best fitting results according to the relative error and the mean square error root.Furthermore,the solubility ofβ-HMX and RDX in binary mixed solvent was compared,based on the solubility difference and the solvent's own properties,the best separation degree ofβ-HMX and RDX was found when the mole fraction of nitric acid was 0.22 at room temperature,which provided data support for HMX crystallization in mixed solvent.The solubility differences between RDX andβ-HMX in mixed solvents were explained from the formation of intermolecular and intramolecular hydrogen bonds. 展开更多
关键词 SOLUBILITY Octrahydro-1 3 5 7-tetranitro-1 3 5 7-tetrazocine Hexahydro-1 3 5-trinitro-1 3 5-triazine Separation Model Hydrogen bond
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部