Cloud point extraction (CPE) processes with two silicone surfactants, Dow Coming DC-190 and DC-193, were studied as preconcentration and treatment for the water polluted by three trace polycyclic aromatic hydrocarbo...Cloud point extraction (CPE) processes with two silicone surfactants, Dow Coming DC-190 and DC-193, were studied as preconcentration and treatment for the water polluted by three trace polycyclic aromatic hydrocarbons (PAHs): anthracene, phenanthrene and pyrene. For all cases, the volumes of surfactant-rich phase obtained by two silicone surfactants were very small, i.e. a lower water content in the surfactant-rich phase was obtained. For example, less than 3% of the initial solution was obtained in a 1% (by mass) surfactant solution, which was much smaller than that of TX-114 in the same surfactant concentration. And TX-114 is known as a high compact surfactant-rich phase among most nonionic surfactants, thus the comparison showed that an excellent enrichment was ensured in the analysis application by the CPE process with the silicone surfactants, and the lower water content obtained in the surfactant-rich phase is also important in the large scale water treatment. The influences of additives and phase separation methodology on the recovery of PAHs were discussed. Comparing with DC-193, DC-190 has a lower cloud point and a higher recovery (near 100%) of all the three PAHs in same surfactant concentration, which was required for application as a preconcentration process prior to HPLC system. However the DC-190 solution is hard to be phase separated only by heating, whereas DC-193 has a relative higher phase separating speed by heating, but a high cloud point (around 360K) limits its application. Due to the phase separation by heating is the only method of CPE suitable to the large scale water treatment, the mixtures of two silicone surfacrants solutions were investigated in this study. A solution containing 1% of mixed DC-190 and DC-193 (in the ratio of 90 : 10) removed anthracene, phenanthrene and pyrene near 100% with a relative low cloud point and quick phase separating speed.展开更多
Edible zein-based films containing lysozyme(LY) and ascorbic acid(AA) were developed in the presence of polyethylene glycol 400(PEG 400), the combined effects of LY and AA on the microstructure, mechanical properties ...Edible zein-based films containing lysozyme(LY) and ascorbic acid(AA) were developed in the presence of polyethylene glycol 400(PEG 400), the combined effects of LY and AA on the microstructure, mechanical properties and release properties of developed zein films were investigated in detail. The results of microstructure characterization indicated that zein-based films became compact and smooth, and LY aggregates were well distributed in the zein matrix because of the simultaneous addition of LY and AA. The results of mechanical tests showed that because of the synergistic effects of LY and AA on zein film, elongation at break of zein-based film could be up to 138%, which was 34.5 times higher than that of zein control film. LY release tests showed that when the concentration of AA was less than 3.1 mg·cm^(-2), the release rate of LY significantly decreased by 33.7%, and the total release increased by 80.6%. While the release profiles of AA showed that the release rate and total release of AA from the films containing LY increased by approximately 68.9% and 61.7% than the films without LY. Good antioxidant and sustained antimicrobial activities were found for the developed zein films.展开更多
The catalytic performance and coking behavior of a submicron ZSM-5 zeolite in dehydration of ethanol to ethylene were investigated by means of low temperature nitrogen adsorption, thermal gravimetric analysis, and nuc...The catalytic performance and coking behavior of a submicron ZSM-5 zeolite in dehydration of ethanol to ethylene were investigated by means of low temperature nitrogen adsorption, thermal gravimetric analysis, and nuclear magnetic resonance. The submicron catalyst showed higher activity than the micron one due to more mesopores and more strong acid sites. As the reaction temperature increased, ethanol conversion increased over the submicron catalyst, while ethylene selectivity went through a maximum. The selectivities of propylene and butylene increased with increasing reaction temperature, and they decreased with time on stream at constant temperature. The coke deposits can be divided into coke precursor and hard coke, which were attributed to polyalkylbenzene and poly- cyclic aromatic hydrocarbons, respectively; and increasing reaction temperature can accelerate the transformation of coke precursor into hard coke. A precoking pretreatment method was verified very effective for improving the catalyst stability.展开更多
Rigorous assessment of heterogeneous electrocatalysts for electrochemical water splitting has been a critical issue mainly due to insufficient standard protocols to measure and report experimental data.In this perspec...Rigorous assessment of heterogeneous electrocatalysts for electrochemical water splitting has been a critical issue mainly due to insufficient standard protocols to measure and report experimental data.In this perspective,we highlight some common pitfalls when measuring and reporting electrocatalytic data,which should be avoided to ensure the accuracy and reproducibility and to advance the water splitting field.We advocate to prevent the introduction of artefacts from the counter and reference electrodes,as well as the impurities in the electrolyte when conducting electrocatalyst activity measurements.In addition,we encourage the use of the electrochemically active surface area(ECSA)-normalized current densities to represent the intrinsic activity of the reported catalysts for a better comparison with previously known materials.Suitable ECSA measurement methods should be employed based on the nature of catalysts.Recommendations made in this perspective will hopefully assist in identifying advanced catalysts for water splitting research.展开更多
文摘Cloud point extraction (CPE) processes with two silicone surfactants, Dow Coming DC-190 and DC-193, were studied as preconcentration and treatment for the water polluted by three trace polycyclic aromatic hydrocarbons (PAHs): anthracene, phenanthrene and pyrene. For all cases, the volumes of surfactant-rich phase obtained by two silicone surfactants were very small, i.e. a lower water content in the surfactant-rich phase was obtained. For example, less than 3% of the initial solution was obtained in a 1% (by mass) surfactant solution, which was much smaller than that of TX-114 in the same surfactant concentration. And TX-114 is known as a high compact surfactant-rich phase among most nonionic surfactants, thus the comparison showed that an excellent enrichment was ensured in the analysis application by the CPE process with the silicone surfactants, and the lower water content obtained in the surfactant-rich phase is also important in the large scale water treatment. The influences of additives and phase separation methodology on the recovery of PAHs were discussed. Comparing with DC-193, DC-190 has a lower cloud point and a higher recovery (near 100%) of all the three PAHs in same surfactant concentration, which was required for application as a preconcentration process prior to HPLC system. However the DC-190 solution is hard to be phase separated only by heating, whereas DC-193 has a relative higher phase separating speed by heating, but a high cloud point (around 360K) limits its application. Due to the phase separation by heating is the only method of CPE suitable to the large scale water treatment, the mixtures of two silicone surfacrants solutions were investigated in this study. A solution containing 1% of mixed DC-190 and DC-193 (in the ratio of 90 : 10) removed anthracene, phenanthrene and pyrene near 100% with a relative low cloud point and quick phase separating speed.
基金Supported by the National Natural Science Foundation of China(21476086)Guangdong Natural Science Foundation(2014A030312007)
文摘Edible zein-based films containing lysozyme(LY) and ascorbic acid(AA) were developed in the presence of polyethylene glycol 400(PEG 400), the combined effects of LY and AA on the microstructure, mechanical properties and release properties of developed zein films were investigated in detail. The results of microstructure characterization indicated that zein-based films became compact and smooth, and LY aggregates were well distributed in the zein matrix because of the simultaneous addition of LY and AA. The results of mechanical tests showed that because of the synergistic effects of LY and AA on zein film, elongation at break of zein-based film could be up to 138%, which was 34.5 times higher than that of zein control film. LY release tests showed that when the concentration of AA was less than 3.1 mg·cm^(-2), the release rate of LY significantly decreased by 33.7%, and the total release increased by 80.6%. While the release profiles of AA showed that the release rate and total release of AA from the films containing LY increased by approximately 68.9% and 61.7% than the films without LY. Good antioxidant and sustained antimicrobial activities were found for the developed zein films.
文摘The catalytic performance and coking behavior of a submicron ZSM-5 zeolite in dehydration of ethanol to ethylene were investigated by means of low temperature nitrogen adsorption, thermal gravimetric analysis, and nuclear magnetic resonance. The submicron catalyst showed higher activity than the micron one due to more mesopores and more strong acid sites. As the reaction temperature increased, ethanol conversion increased over the submicron catalyst, while ethylene selectivity went through a maximum. The selectivities of propylene and butylene increased with increasing reaction temperature, and they decreased with time on stream at constant temperature. The coke deposits can be divided into coke precursor and hard coke, which were attributed to polyalkylbenzene and poly- cyclic aromatic hydrocarbons, respectively; and increasing reaction temperature can accelerate the transformation of coke precursor into hard coke. A precoking pretreatment method was verified very effective for improving the catalyst stability.
基金the Fund of the Australian Renewable Energy Agency(ARENA)and the Fund of the Australian Research Council(No.FT170100224)。
文摘Rigorous assessment of heterogeneous electrocatalysts for electrochemical water splitting has been a critical issue mainly due to insufficient standard protocols to measure and report experimental data.In this perspective,we highlight some common pitfalls when measuring and reporting electrocatalytic data,which should be avoided to ensure the accuracy and reproducibility and to advance the water splitting field.We advocate to prevent the introduction of artefacts from the counter and reference electrodes,as well as the impurities in the electrolyte when conducting electrocatalyst activity measurements.In addition,we encourage the use of the electrochemically active surface area(ECSA)-normalized current densities to represent the intrinsic activity of the reported catalysts for a better comparison with previously known materials.Suitable ECSA measurement methods should be employed based on the nature of catalysts.Recommendations made in this perspective will hopefully assist in identifying advanced catalysts for water splitting research.