Strainbursts induced by cyclic disturbance with low frequency(termed as cyclicinduced strainbursts)are major dynamic disasters during deep excavation and mining.There is currently no quantitative criterion available f...Strainbursts induced by cyclic disturbance with low frequency(termed as cyclicinduced strainbursts)are major dynamic disasters during deep excavation and mining.There is currently no quantitative criterion available for the prediction of such disastrous events.In this study,based on true triaxial experiments,we analyzed the deformation characteristics,established two novel strain criteria for the cyclic-induced strainbursts,and explained the physical meaning of these criteria.Characteristic strains for the cyclic-induced strainbursts were defined,including the control strain ε_(ctr),the strain caused by the combined dynamic and static loading ε_(sd),and the ultimate strain ε_(u) after strainbursts.As indicated by the results,the deformation evolution of the cyclic-induced strainbursts shows remarkable fatigue characteristics,which resemble that of rock subjected to cyclic loading and unloading.In other words,there are three stages during deformation evolution,namely,initial rapid growth,uniform velocity growth after several periods of disturbance,and sudden sharp growth preceding the burst.The ultimate strain ε_(u) is insensitive to the tangential static stress and disturbance amplitude,but it changes nonlinearly with disturbance frequency.From the perspective of deformation,the occurrence of a cyclic-induced strainburst is controlled by the control strainε_(ctr).Thus,a control strain criterion is proposed;that is,when the stain ε_(sd) is larger than the control strain ε_(ctr),a strainburst will be induced by cyclic disturbance.Moreover,based on the statistical results,a strain ratio criterion is proposed;that is,when the strain ratio ε_(sd)/ε_(u) is greater than 30%,a cyclic-induced strainburst will be induced.展开更多
To evaluate the geotechnical properties of coarse-grained soil affected by cyclic freeze-thaw,the electrical resistivity and mechanical tests are conducted.The soil specimens are prepared under different water content...To evaluate the geotechnical properties of coarse-grained soil affected by cyclic freeze-thaw,the electrical resistivity and mechanical tests are conducted.The soil specimens are prepared under different water contents,dry densities and exposed to 0?20 freeze-thaw cycles.As a result,the stress?strain behavior of the specimen(w=14.0%andρd=1.90 g/cm^3)changes from strain-hardening into strain-softening due to the freeze-thaw effect.The electrical resistivity of test specimen increases with the freeze-thaw cycles change,but the mechanical parameters(the unconfined compressive strength qu and the deformation modulus E)and brittleness index decrease considerably at the same conditions.All of them tend to be stable after 7?9 cycles.Moreover,both the dry density and the water content have reciprocal effects on the freeze-thaw actions.The failure and pore characteristics of specimens affected by freeze-thaw cycles are discussed by using the image analysis method.Then,an exponential function equation is developed to assess the electrical resistivity of specimens affected by the cyclic freeze-thaw.Linear relations between the mechanical parameters and the electrical resistivity of specimens are established to evaluate the geotechnical properties of the soil exposed to freeze-thaw actions through the corresponding electrical resistivity.展开更多
The Late Cenozoic basins in the Weihe-Shanxi Graben, North China Craton are delineated by northeast-striking faults. The faults have, since a long time, been related to the progressive uplift and northeastward expansi...The Late Cenozoic basins in the Weihe-Shanxi Graben, North China Craton are delineated by northeast-striking faults. The faults have, since a long time, been related to the progressive uplift and northeastward expansion of the Tibetan Plateau. To show the relation between the basins and faults, two Pliocene-Pleistocene stratigraphic sections (Chengqiang and Hongyanangou) in the southern part of the Nihewan Basin at the northernmost parts of the graben are studied herein. Based on the sedimentary sequences and facies, the sections are divided into three evolutionary stages, such as alluvial fan-eolian red clay, fan delta, and fluvial, with boundaries at -2.8 and -1.8 Ma. Paleocurrent indicators, the composition of coarse clastics, heavy minerals, and the geochemistry of moderate-fine clastics are used to establish the temporal and spatial variations in the source areas. Based on features from the middle- northern basin, we infer that the Nihewan Basin comprises an old NE-SW elongate geotectogene and a young NW-SE elongate subgeotectogene. The main geotectogene in the mid-north is a half-graben bounded by northeast-striking and northwest-dipping normal faults (e.g., Liulengshan Fault). This group of faults was mainly affected by the Pliocene (before -2.8-2.6 Ma) NW-SE extension and controlled the deposition of sediments. In contrast, the subgeotectogene in the south was affected by northwest-striking normal faults (e.g., Huliuhe Fault) that were controlled by the subsequent weak NE- SW extension in the Pleistocene. The remarkable change in the sedimentary facies and provenance since -1.8 Ma is possibly a signal of either weak or strong NE-SW extension. This result implies that the main tectonic transition ages of -2.8-2.6 Ma and -1.8 Ma in the Weihe-Shanxi Graben are affected by the Tibetan Plateau in Pliocene-Pleistocene.展开更多
Considering the effects of particle crushing and intermediate principal stress on material yielding strength, the spatial mobilization plane(SMP) yielding criterion and state parameter model including a general critic...Considering the effects of particle crushing and intermediate principal stress on material yielding strength, the spatial mobilization plane(SMP) yielding criterion and state parameter model including a general critical state line are selected in the analysis of cylindrical cavity expansion.Meanwhile, combining Rowe s flow rule and Bolton s simplification to stress-dilatancy relationship to reflect soil shear dilatancy and softening behavior, this paper analyzes the problem of cylindrical cavity expansion i...展开更多
Rock mass is a fractured porous medium usually subjected to complex geostress and fluid pressure simultaneously.Moreover,the properties of rock mass change in time and space due to mining-induced fractures.Therefore,i...Rock mass is a fractured porous medium usually subjected to complex geostress and fluid pressure simultaneously.Moreover,the properties of rock mass change in time and space due to mining-induced fractures.Therefore,it is always challenging to accurately measure rock mass properties.In this study,a three-dimensional(3D)microseismic(MS)data-driven damage model for jointed rock mass under hydro-mechanical coupling conditions is proposed.It is a 3D finite element model that takes seepage,damage and stress field effects into account jointly.Multiple factors(i.e.joints,water and microseismicity)are used to optimize the rock mass mechanical parameters at different scales.The model is applied in Shirengou iron mine to study the damage evolution of rock mass and assess the crown pillar stability during the transition from open-pit to underground mining.It is found that the damage pattern is mostly controlled by the structure,water and rock mass parameters.The damage pattern is evidently different from the two-dimensional result and is more consistent with the field observations.This difference is caused by the MS-derived damage acting on the rock mass.MS data are responsible for gradually correcting the damage zone,changing the direction in which it expands,and promoting it to evolve close to reality.For the crown pillar,the proposed model yields a more trustworthy safety factor.In order to guarantee the stability of the pillar,it is suggested to take waterproof and reinforcement measures in areas with a high degree of damage.展开更多
The effect of intermediate stress(in situ tunnel axial)on a strainburst is studied with a threedimensional(3D)bonded block distinct element method(DEM).A series of simulations of strainbursts under true triaxial in si...The effect of intermediate stress(in situ tunnel axial)on a strainburst is studied with a threedimensional(3D)bonded block distinct element method(DEM).A series of simulations of strainbursts under true triaxial in situ stress conditions(i.e.high tangential stress,moderate intermediate stress and low radial stress)of near-boundary rock masses are performed.Compared with the experimental results,the DEM model is able to capture the stress-strain response,failure pattern and energy balance of strainbursts.The fracturing processes of strainbursts are also numerically reproduced.Numerical results show that,as the intermediate stress increases:(1)The peak strain of strainbursts increases,the yield stress increases,the rock strength increases linearly,and the ratio of yield stress to rock strength decreases,indicating that the precursory information on strainbursts is enhanced;(2)Tensile and shear cracks increase significantly,and slabbing and bending of rock plates are more pronounced;and(3)The stored elastic strain energy and dissipated energy increase linearly,whereas the kinetic energy of the ejected rock fragments increases approximately exponentially,implying an increase in strainburst intensity.By comparing the experimental and numerical results,the effect of intermediate stress on the rock strength of strainbursts is discussed in order to address three key issues.Then,the Mogi criterion is applied to construct new strength criteria for strainbursts by converting the one-face free true triaxial stress state of a strainburst to its equivalent true triaxial stress state.In summary,the effect of intermediate stress on strainbursts is a double-edged sword that can enhance the rock strength and the precursory information of a strainburst,but also increase its intensity.展开更多
Rockburst is a typical rock failure which frequently threatens both human life and construction equipment during highly stressed underground excavation.Rock lithology is a control factor of rockburst.In this paper,roc...Rockburst is a typical rock failure which frequently threatens both human life and construction equipment during highly stressed underground excavation.Rock lithology is a control factor of rockburst.In this paper,rockburst tests were conducted on rectangular prismatic specimens of six types of intact hard brittle rocks,i.e.granodiorite,granite,marble,basalt,sandstone and limestone,under one-free-face true triaxial loading conditions.With the use of high-speed cameras,an acoustic emission(AE)system and a scanning electron microscope(SEM),rockburst of different rocks was investigated.The results show that the strainbursts of granodiorite,granite and marble were accompanied by tensile splitting near the free face,and consequently were relatively strong with a large amount of fragment ejection and kinetic energy release.For basalt,sandstone and limestone,failure was primarily dominated by shear rupture.The strainbursts of basalt and sandstone were relatively small with minor fragment ejection and kinetic energy release;while no burst failure occurred on limestone due to its relatively low peak strength.Rock strength,fracturing and fragmentation characteristics,and failure modes of different rocks can significantly affect rockburst proneness and magnitude.The AE evolution coupled with SEM analysis reveals that the differences in the inhe rent microstructures and fracture evolution under loading are the primary factors accounting for different rockbursts in various rock types.展开更多
The interaction between geogrid and soil is crucial for the stability of geogrid-reinforced earth structure. In finite element (FE) analysis, geogrids are usually assumed as beam or truss elements, and the interacti...The interaction between geogrid and soil is crucial for the stability of geogrid-reinforced earth structure. In finite element (FE) analysis, geogrids are usually assumed as beam or truss elements, and the interaction between geogrid and soil is considered as Coulomb friction resistance, which cannot reflect the true stress and displacement developed in the reinlbrcement. And the traditional Lagrangian elements used to simulate soil always become highly distorted and lose accuracy in high-stress blocks. An improved geogrid model that can produce shear resistance and passive resistance and a soil model using the Eulerian technique, in combination with the coupled Eulerian-Lagrangian (CEL) method, are used to analyze the interaction between geogrid and soil of reinforced foundation test in ABAQUS. The stress in the backfill, resistance of geogrid, and settlement of foundation were computed and the results of analysis agree well with the experimental results. This simulation method is of referential value for FE analysis of reinforced earth structure.展开更多
This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete comp...This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete composite brace, is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation. Together with a contribution from the GFRP-tube confined concrete, the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting. An analysis model is established and implemented in a general finite element analysis program - OpenSees, for simulating the load-displacement behavior of the composite brace. Using this model, a parametric study of the hysteretic behavior (energy dissipation, stiffness, ductility and strength) of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered. To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete (RC) frame structure was retrofitted with the composite braces. Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records. The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand.展开更多
A consensus on Holocene climate variability at the modern northern fringe of the East Asian summer monsoon(EASM) region remains elusive. Here, we present a pollen-based reconstruction of vegetation history and associa...A consensus on Holocene climate variability at the modern northern fringe of the East Asian summer monsoon(EASM) region remains elusive. Here, we present a pollen-based reconstruction of vegetation history and associated climate variations of a sediment core from Huangqihai Lake, central Inner Mongolia. During 10.7 to 8.8 cal kaBP, typical steppe with small patches of forest dominated the lake area, suggesting a moderately wet climate, followed by ameliorating climatic conditions until 8.0 cal kaBP as deduced by the expansion of forest. Typical steppe recovered the lake area between 8.0 and 7.2 cal kaBP, reflecting a deterioration of climatic conditions;in combination with other proxy records in the study region, we noticed that severe aridity was prevailed in the lake area between 8.0 and 7.6 cal kaBP. During 7.2 to 3.2 cal kaBP, abundant tree pollen indicated dominance of forest-steppe around the lake, marking regionally wet conditions. A notable absence of broadleaved trees after 5.2 cal kaBP reveals a slight drying trend, and climate deterioration from 4.5 to 4.1 cal kaBP might be linked to the 4.2 ka event. After 3.2 cal kaBP, a transition to steppe was associated with dry conditions in the region. Based on our pollen record and prior paleoclimatic reconstructions in the Huangqihai Lake region, there was a generally-accepted, stepwise shift to a wet climate during the early Holocene, an overall humid climate from 7.2 to 3.2 cal kaBP, and then severe drought for the rest of the Holocene. Moreover, regional comparisons among pollen records derived from lakes situated in the temperate steppe region suggested a roughly synchronous pattern of vegetation and climate changes during the Holocene and demonstrated an intensified EASM during the middle Holocene.展开更多
Bioflocculant-producing bacteria Agrobacterium tumefaciens F2 and Bacillus sphaeicus F6 were immobilized onto mycelial pellets to investigate the bioflocculant-producing potential of this combined organism and the cor...Bioflocculant-producing bacteria Agrobacterium tumefaciens F2 and Bacillus sphaeicus F6 were immobilized onto mycelial pellets to investigate the bioflocculant-producing potential of this combined organism and the corresponding flocculating efficiency. The atomic force microscope ( AFM) images of mycelial surface indicate that the mycelia pellet can immobilize bioflocculant-producing bacteria F2 and F6 as a biomass carrier. The flocculating efficiency of bioflocculant produced by this combined organism was studied under the optimum flocculating conditions obtained by Response Surface Methodology ( RSM ) . The fermentation yield of the combined mycelial pellet is about 2. 6 g / L,which is higher than that of the free bacteria ( only 2. 2 g / L) . Flocculating efficiency of the combined mycelial pellet was comparable with that of bioflocculant generated by the free bacteria. The bioflocculant yield is enhanced and the flocculating efficiency of the co-culture is uninfluenced after immobilized with mycelial pellet as a carrier. In conclusion,the mycelial pellet is feasible as a biomass carrier for the immobilization of bioflocculant-producing bacteria.展开更多
An analytical method was derived for the thermal consolidation of layered, saturated porous half-space to variable thermal loading with time. In the coupled governing equations of linear thermoelastic media, the influ...An analytical method was derived for the thermal consolidation of layered, saturated porous half-space to variable thermal loading with time. In the coupled governing equations of linear thermoelastic media, the influences of thermo-osmosis effect and thermal filtration effect were introduced. Solutions in Laplace transform space were first obtained and then numerically inverted. The responses of a double-layered porous space subjected to exponential decaying thermal loading were studied. The influences of the differences between the properties of the two layers (e.g., the coefficient of thermal consolidation, elastic modulus) on thermal consolidation were discussed. The studies show that the coupling effects of displacement and stress fields on temperature field can be completely neglected, however, the the thermal responses. effect has an obvious influence on展开更多
To lower the costs of wastewater treatment, the submerged hollow fiber ultrafiltration membrane was employed to reuse the filter backwash water and settling tank sludge water. Experimental study indicates that the sub...To lower the costs of wastewater treatment, the submerged hollow fiber ultrafiltration membrane was employed to reuse the filter backwash water and settling tank sludge water. Experimental study indicates that the submerged hollow fiber uhrafihration membrane can condense the concentration of sludge from 0. 1% -0. 3% to 2.5%. At 20 ℃, the system can operate continuously for 80 clays with daily online backwashing with chemical additions only once, and the membrane flux can be recovered up to 97% by using NaClO and NaOH as chemical additions. The results show that the membrane flux is mainly affected by temperature,and has a positive lin- ear relation to temperature with a slope of 0. 368. After treated by submerged hollow fiber uhrafihration membrane, the effluent can reach the National Standard for Drinking Water( GB5749 -85 ) , especially for the sludge water from sedimentation tanks and the backwashing Water from filters in water supply plants.展开更多
Two-Line Element(TLE)datasets are the only orbital data source of Earth-orbiting space objects for many civil users for their research and applications.The datasets have uneven qualities that may affect the reliabilit...Two-Line Element(TLE)datasets are the only orbital data source of Earth-orbiting space objects for many civil users for their research and applications.The datasets have uneven qualities that may affect the reliability of the propagated positions of space objects using a single TLE.The least squares approach to use multiple TLEs also suffers from the poor quality of some TLEs,and reliable error information cannot be available.This paper proposes a simplex algorithm to estimate an optimal TLE from multiple TLEs and obtain the uncertainty of each element.It is a derivative-free technique that can deal with various orbit types.Experiments have demonstrated that using the TLE estimated from the simplex method is more reliable,stable,and effective than those from the batch least squares method.As an application example,the optimal TLE and its uncertainty are used for predicting the fallen area,keeping the actual fallen site in the prediction areas.展开更多
This research aims to develop an advanced deep learning-based ensemble algorithm,utilizing environmental temperature and solar radiation as feature factors,to conduct hourly temperature field predictions for steel-con...This research aims to develop an advanced deep learning-based ensemble algorithm,utilizing environmental temperature and solar radiation as feature factors,to conduct hourly temperature field predictions for steel-concrete composite decks(SCCDs).The proposed model comprises feature parameter lag selection,two non-stationary time series decomposition methods(empirical mode decomposition(EMD)and time-varying filtering-based empirical mode decomposition(TVFEMD)),and a stacking ensemble prediction model.To validate the proposed model,five machine learning(ML)models(random forest(RF),support vector regression(SVR),multilayer perceptron(MLP),gradient boosting regression(GBR),and extreme gradient boosting(XGBoost))were tested as base learners and evaluations were conducted within independent,mixed,and ensemble frameworks.Finally,predictions are made based on engineering cases.The results indicate that consideration of lag variables and modal decomposition can significantly improve the prediction performance of learners,and the stacking framework,which combines multiple learners,achieves superior prediction results.The proposed method demonstrates a high degree of predictive robustness and can be applied to statistical analysis of the temperature field in SCCDs.Incorporating time lag features helps account for the delayed heat dissipation phenomenon in concrete,while decomposition techniques assist in feature extraction.展开更多
To promote charge transfer and separation for efficient photocatalysis,a direct Z-scheme heterostructure was constructed by coupling polymeric carbon nitride(PCN) and WO_(3).Interestingly,the obtained PCN/WO_(3)Z-sche...To promote charge transfer and separation for efficient photocatalysis,a direct Z-scheme heterostructure was constructed by coupling polymeric carbon nitride(PCN) and WO_(3).Interestingly,the obtained PCN/WO_(3)Z-scheme heterostructure could photocataly tic ally produce hydrogen and value-added chemicals(e.g.,formate and acetate) by reforming of plastic polylactic acid(PLA) in alkaline aqueous condition.By optimizing WO_(3) contents and reaction conditions,the obtained PCN/WO_(3)heterostructure exhibits much increased photocatalytic activity for PLA photoreforming under visible light,with hydrogen evolution rate reaching 402.90 μmol·g~(-1)·h~(-1),which is 3.5 times that of PCN.It is revealed that the Z-scheme charge transfer between PCN and WO_(3) mainly contributes to the promoted charge separation and thus the improved photocatalytic activity.Moreover,with h+and·OH experimentally evidenced as the predominant active species,a possible reaction pathway for the reforming of PLA into value-added chemicals(e.g.,formate and acetate)over PCN/WO_(3) Z-scheme heterostructure is cleared by monitoring the reaction intermediates and radicals.This work paves a carbon neutrality and scalable route toward the synergistical production of hydrogen and value-added chemicals by utilizing and recycling plastic waste.展开更多
Extracellular polymeric substances(EPS)form a stable gel-like structure to combine with water molecules through steric hindrance,making the mechanical dewatering of wastewater sludge considerably difficult.Coagulation...Extracellular polymeric substances(EPS)form a stable gel-like structure to combine with water molecules through steric hindrance,making the mechanical dewatering of wastewater sludge considerably difficult.Coagulation/flocculation has been widely applied in improving the sludge dewatering performance,while sludge properties(organic fraction and solution chemistry conditions)are highly changeable and have important effects on sludge flocculation process.In this work,the alkalinity effects on sludge conditioning with hydroxy-aluminum were comprehensively investigated,and the interaction mechanisms between EPS and hydroxy-aluminum with different speciation were unraveled.The results showed that the effectiveness of hydroxy-aluminum conditioning gradually deteriorated with increase in alkalinity.Meanwhile,the polymeric hydroxy-aluminum(Al 13)and highly polymerized hydroxy-aluminum(Al 30)were hydrolysed and converted into amorphous aluminum hydroxide(Al(OH)3),which changed the flocculation mechanism from charge neutralization and complexing adsorption to hydrogen bond interaction.Additionally,both Al 13 and Al 30 showed higher binding capacity for proteins and polysaccharides in EPS than monomeric aluminum and Al(OH)3.Al 13 and Al 30 coagulation changed the secondary structure of proteins in EPS,which caused a gelation reaction to increase molecular hydrophobicity of proteins and consequently sludge dewaterability.This study provided a guidance for optimizing the hydroxy-aluminum flocculation conditioning of sludge with high solution alkalinity.展开更多
Aluminum ions produced by aluminum mining,electrolytic industry and aluminum-based coagulants can enter wastewater treatment plants and interact with activated sludge.They can subsequently contribute to the removal of...Aluminum ions produced by aluminum mining,electrolytic industry and aluminum-based coagulants can enter wastewater treatment plants and interact with activated sludge.They can subsequently contribute to the removal of suspended solids and affect activated sludge flocculation,as well as nitrogen and phosphorus removal.In this study,the effects of Al^3+on pollutant removal,sludge flocculation and the composition and structure of extracellular polymeric substances(EPS)were investigated under anaerobic,anoxic and oxic conditions.Results demonstrated that the highest chemical oxygen demand(COD)and total nitrogen(TN)removal efficiencies were detected for an Al^3+concentration of 10 mg/L.In addition,the maximal dehydrogenase activity and sludge flocculation were also observed at this level of Al^3+.The highest removal efficiency of total phosphorus(TP)was achieved at an Ar+concentration of30 mg/L.The flocculability of sludge in the anoxic zone was consistently higher than that in the anaerobic and oxic zones.The addition of Al^3+promoted the secretion of EPS.Tryptophan-like fluorescence peaks were detected in each EPS layer in the absence of Al^3+.At the Al^3+concentration of 10 mg/L,fulvic acid and tryptophan fluorescence peaks began to appear while the majority of protein species and the highest microbial activity were also detected.Low Al^3+concentrations(<10 mg/L)could promote the removal efficiencies of COD and TN,yet excessive Al^3+levels(>10 mg/L)weakened microbial activity.Higher Al^3+concentrations(>30 mg/L)also inhibited the release of phosphorus in the anaerobic zone by reacting with PO4^3-.展开更多
Numerical simulation of stepped channel flow was conducted using turbulence models based on the VOF technique. Stepped channel flow is a complicated air-water two-phase flow with free surface, which can be divided int...Numerical simulation of stepped channel flow was conducted using turbulence models based on the VOF technique. Stepped channel flow is a complicated air-water two-phase flow with free surface, which can be divided into three flow regimes: skimming flow, nappe flow and transition flow. The characteristics of skimming flow over mild stepped channel was investigated, including friction factors, air concentration profiles velocity field, clear-water and bulked depths, static pressure, etc. Smooth channel flow was also simulated to compare the hydraulic characteristics of the stepped channel flow with the smooth one. Comparisons between the computed and the measured were made. Furthermore, comparison of the computed air concentration with Straub and Anderson's data was also performed. The Fluent 6.1 software was employed to conduct this numerical simulation work.展开更多
基金Fundamental Research Funds for the Central Universities,Grant/Award Number:2022QN1032。
文摘Strainbursts induced by cyclic disturbance with low frequency(termed as cyclicinduced strainbursts)are major dynamic disasters during deep excavation and mining.There is currently no quantitative criterion available for the prediction of such disastrous events.In this study,based on true triaxial experiments,we analyzed the deformation characteristics,established two novel strain criteria for the cyclic-induced strainbursts,and explained the physical meaning of these criteria.Characteristic strains for the cyclic-induced strainbursts were defined,including the control strain ε_(ctr),the strain caused by the combined dynamic and static loading ε_(sd),and the ultimate strain ε_(u) after strainbursts.As indicated by the results,the deformation evolution of the cyclic-induced strainbursts shows remarkable fatigue characteristics,which resemble that of rock subjected to cyclic loading and unloading.In other words,there are three stages during deformation evolution,namely,initial rapid growth,uniform velocity growth after several periods of disturbance,and sudden sharp growth preceding the burst.The ultimate strain ε_(u) is insensitive to the tangential static stress and disturbance amplitude,but it changes nonlinearly with disturbance frequency.From the perspective of deformation,the occurrence of a cyclic-induced strainburst is controlled by the control strainε_(ctr).Thus,a control strain criterion is proposed;that is,when the stain ε_(sd) is larger than the control strain ε_(ctr),a strainburst will be induced by cyclic disturbance.Moreover,based on the statistical results,a strain ratio criterion is proposed;that is,when the strain ratio ε_(sd)/ε_(u) is greater than 30%,a cyclic-induced strainburst will be induced.
基金Project(2016ZGHJ/XZHTL-YQSC-26)supported by the Key Scientific Research Project of China Gold GroupProject(SQ2019QZKK2806)supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program,China+1 种基金Project(300102268716)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(LHKA-G201701)supported by the Science and Technology Project of Yalong River Hydropower Development Company,China。
文摘To evaluate the geotechnical properties of coarse-grained soil affected by cyclic freeze-thaw,the electrical resistivity and mechanical tests are conducted.The soil specimens are prepared under different water contents,dry densities and exposed to 0?20 freeze-thaw cycles.As a result,the stress?strain behavior of the specimen(w=14.0%andρd=1.90 g/cm^3)changes from strain-hardening into strain-softening due to the freeze-thaw effect.The electrical resistivity of test specimen increases with the freeze-thaw cycles change,but the mechanical parameters(the unconfined compressive strength qu and the deformation modulus E)and brittleness index decrease considerably at the same conditions.All of them tend to be stable after 7?9 cycles.Moreover,both the dry density and the water content have reciprocal effects on the freeze-thaw actions.The failure and pore characteristics of specimens affected by freeze-thaw cycles are discussed by using the image analysis method.Then,an exponential function equation is developed to assess the electrical resistivity of specimens affected by the cyclic freeze-thaw.Linear relations between the mechanical parameters and the electrical resistivity of specimens are established to evaluate the geotechnical properties of the soil exposed to freeze-thaw actions through the corresponding electrical resistivity.
基金supported by Grants from National Natural Science Foundation of China(No.41172150)the Ministry of Land and Resources of China(No.201211005–1)+1 种基金China Geological Survey(CGS)(No.1212011120099)China Scholarship Council(CSC)
文摘The Late Cenozoic basins in the Weihe-Shanxi Graben, North China Craton are delineated by northeast-striking faults. The faults have, since a long time, been related to the progressive uplift and northeastward expansion of the Tibetan Plateau. To show the relation between the basins and faults, two Pliocene-Pleistocene stratigraphic sections (Chengqiang and Hongyanangou) in the southern part of the Nihewan Basin at the northernmost parts of the graben are studied herein. Based on the sedimentary sequences and facies, the sections are divided into three evolutionary stages, such as alluvial fan-eolian red clay, fan delta, and fluvial, with boundaries at -2.8 and -1.8 Ma. Paleocurrent indicators, the composition of coarse clastics, heavy minerals, and the geochemistry of moderate-fine clastics are used to establish the temporal and spatial variations in the source areas. Based on features from the middle- northern basin, we infer that the Nihewan Basin comprises an old NE-SW elongate geotectogene and a young NW-SE elongate subgeotectogene. The main geotectogene in the mid-north is a half-graben bounded by northeast-striking and northwest-dipping normal faults (e.g., Liulengshan Fault). This group of faults was mainly affected by the Pliocene (before -2.8-2.6 Ma) NW-SE extension and controlled the deposition of sediments. In contrast, the subgeotectogene in the south was affected by northwest-striking normal faults (e.g., Huliuhe Fault) that were controlled by the subsequent weak NE- SW extension in the Pleistocene. The remarkable change in the sedimentary facies and provenance since -1.8 Ma is possibly a signal of either weak or strong NE-SW extension. This result implies that the main tectonic transition ages of -2.8-2.6 Ma and -1.8 Ma in the Weihe-Shanxi Graben are affected by the Tibetan Plateau in Pliocene-Pleistocene.
基金Supported by National Natural Science Foundation of China (No. 50639010)PhD Start-up Research Fund of Northeast Dianli University (2010)
文摘Considering the effects of particle crushing and intermediate principal stress on material yielding strength, the spatial mobilization plane(SMP) yielding criterion and state parameter model including a general critical state line are selected in the analysis of cylindrical cavity expansion.Meanwhile, combining Rowe s flow rule and Bolton s simplification to stress-dilatancy relationship to reflect soil shear dilatancy and softening behavior, this paper analyzes the problem of cylindrical cavity expansion i...
基金We acknowledge the combined support from the National Natural Science Foundation of China(Grant Nos.52039007 and 42102325)Tiandi Science and Technology Co.,Ltd.(Grant No.2022-2-TD-MS012).
文摘Rock mass is a fractured porous medium usually subjected to complex geostress and fluid pressure simultaneously.Moreover,the properties of rock mass change in time and space due to mining-induced fractures.Therefore,it is always challenging to accurately measure rock mass properties.In this study,a three-dimensional(3D)microseismic(MS)data-driven damage model for jointed rock mass under hydro-mechanical coupling conditions is proposed.It is a 3D finite element model that takes seepage,damage and stress field effects into account jointly.Multiple factors(i.e.joints,water and microseismicity)are used to optimize the rock mass mechanical parameters at different scales.The model is applied in Shirengou iron mine to study the damage evolution of rock mass and assess the crown pillar stability during the transition from open-pit to underground mining.It is found that the damage pattern is mostly controlled by the structure,water and rock mass parameters.The damage pattern is evidently different from the two-dimensional result and is more consistent with the field observations.This difference is caused by the MS-derived damage acting on the rock mass.MS data are responsible for gradually correcting the damage zone,changing the direction in which it expands,and promoting it to evolve close to reality.For the crown pillar,the proposed model yields a more trustworthy safety factor.In order to guarantee the stability of the pillar,it is suggested to take waterproof and reinforcement measures in areas with a high degree of damage.
基金We acknowledge the funding support from the National Natural Science Foundation of China(Grant Nos.52009016 and 52179118)the Fundamental Research Funds for the Central Universities(Grant No.2022QN1032).
文摘The effect of intermediate stress(in situ tunnel axial)on a strainburst is studied with a threedimensional(3D)bonded block distinct element method(DEM).A series of simulations of strainbursts under true triaxial in situ stress conditions(i.e.high tangential stress,moderate intermediate stress and low radial stress)of near-boundary rock masses are performed.Compared with the experimental results,the DEM model is able to capture the stress-strain response,failure pattern and energy balance of strainbursts.The fracturing processes of strainbursts are also numerically reproduced.Numerical results show that,as the intermediate stress increases:(1)The peak strain of strainbursts increases,the yield stress increases,the rock strength increases linearly,and the ratio of yield stress to rock strength decreases,indicating that the precursory information on strainbursts is enhanced;(2)Tensile and shear cracks increase significantly,and slabbing and bending of rock plates are more pronounced;and(3)The stored elastic strain energy and dissipated energy increase linearly,whereas the kinetic energy of the ejected rock fragments increases approximately exponentially,implying an increase in strainburst intensity.By comparing the experimental and numerical results,the effect of intermediate stress on the rock strength of strainbursts is discussed in order to address three key issues.Then,the Mogi criterion is applied to construct new strength criteria for strainbursts by converting the one-face free true triaxial stress state of a strainburst to its equivalent true triaxial stress state.In summary,the effect of intermediate stress on strainbursts is a double-edged sword that can enhance the rock strength and the precursory information of a strainburst,but also increase its intensity.
基金the financial support from the National Natural Science Foundation of China under Grant No.51869003supported by the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)under Grant No.SKLGP2017K022Study Abroad Program for Excellent PhD Students of Guangxi University。
文摘Rockburst is a typical rock failure which frequently threatens both human life and construction equipment during highly stressed underground excavation.Rock lithology is a control factor of rockburst.In this paper,rockburst tests were conducted on rectangular prismatic specimens of six types of intact hard brittle rocks,i.e.granodiorite,granite,marble,basalt,sandstone and limestone,under one-free-face true triaxial loading conditions.With the use of high-speed cameras,an acoustic emission(AE)system and a scanning electron microscope(SEM),rockburst of different rocks was investigated.The results show that the strainbursts of granodiorite,granite and marble were accompanied by tensile splitting near the free face,and consequently were relatively strong with a large amount of fragment ejection and kinetic energy release.For basalt,sandstone and limestone,failure was primarily dominated by shear rupture.The strainbursts of basalt and sandstone were relatively small with minor fragment ejection and kinetic energy release;while no burst failure occurred on limestone due to its relatively low peak strength.Rock strength,fracturing and fragmentation characteristics,and failure modes of different rocks can significantly affect rockburst proneness and magnitude.The AE evolution coupled with SEM analysis reveals that the differences in the inhe rent microstructures and fracture evolution under loading are the primary factors accounting for different rockbursts in various rock types.
基金Supported by National Natural Science Foundation of China (No. 50678032)
文摘The interaction between geogrid and soil is crucial for the stability of geogrid-reinforced earth structure. In finite element (FE) analysis, geogrids are usually assumed as beam or truss elements, and the interaction between geogrid and soil is considered as Coulomb friction resistance, which cannot reflect the true stress and displacement developed in the reinlbrcement. And the traditional Lagrangian elements used to simulate soil always become highly distorted and lose accuracy in high-stress blocks. An improved geogrid model that can produce shear resistance and passive resistance and a soil model using the Eulerian technique, in combination with the coupled Eulerian-Lagrangian (CEL) method, are used to analyze the interaction between geogrid and soil of reinforced foundation test in ABAQUS. The stress in the backfill, resistance of geogrid, and settlement of foundation were computed and the results of analysis agree well with the experimental results. This simulation method is of referential value for FE analysis of reinforced earth structure.
文摘This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete composite brace, is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation. Together with a contribution from the GFRP-tube confined concrete, the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting. An analysis model is established and implemented in a general finite element analysis program - OpenSees, for simulating the load-displacement behavior of the composite brace. Using this model, a parametric study of the hysteretic behavior (energy dissipation, stiffness, ductility and strength) of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered. To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete (RC) frame structure was retrofitted with the composite braces. Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records. The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand.
基金funded by the Geological Survey Projects of China(Grant Nos.DD20190370 and DD20190009)supported by Natural Science Foundation of Shaanxi Province,China(Grant No.2019JQ-835)Research Foundation of Education Bureau of Shaanxi Province,China(Grant No.2019JK-0404)。
文摘A consensus on Holocene climate variability at the modern northern fringe of the East Asian summer monsoon(EASM) region remains elusive. Here, we present a pollen-based reconstruction of vegetation history and associated climate variations of a sediment core from Huangqihai Lake, central Inner Mongolia. During 10.7 to 8.8 cal kaBP, typical steppe with small patches of forest dominated the lake area, suggesting a moderately wet climate, followed by ameliorating climatic conditions until 8.0 cal kaBP as deduced by the expansion of forest. Typical steppe recovered the lake area between 8.0 and 7.2 cal kaBP, reflecting a deterioration of climatic conditions;in combination with other proxy records in the study region, we noticed that severe aridity was prevailed in the lake area between 8.0 and 7.6 cal kaBP. During 7.2 to 3.2 cal kaBP, abundant tree pollen indicated dominance of forest-steppe around the lake, marking regionally wet conditions. A notable absence of broadleaved trees after 5.2 cal kaBP reveals a slight drying trend, and climate deterioration from 4.5 to 4.1 cal kaBP might be linked to the 4.2 ka event. After 3.2 cal kaBP, a transition to steppe was associated with dry conditions in the region. Based on our pollen record and prior paleoclimatic reconstructions in the Huangqihai Lake region, there was a generally-accepted, stepwise shift to a wet climate during the early Holocene, an overall humid climate from 7.2 to 3.2 cal kaBP, and then severe drought for the rest of the Holocene. Moreover, regional comparisons among pollen records derived from lakes situated in the temperate steppe region suggested a roughly synchronous pattern of vegetation and climate changes during the Holocene and demonstrated an intensified EASM during the middle Holocene.
基金Sponsored by the National Hi-Tech Research and Development Program (Grant No. 2009AA062906)the National Creative Research Group from the National Natural Science Foundation of China (Grant No. 51121062)+1 种基金the State Key Lab of Urban Water Resource and Environment,Harbin Institute of Technology (Grant No. 2010DX09,2010TX03)the Science and Technology Development Program of Jilin Province (Grant No. 201101108)
文摘Bioflocculant-producing bacteria Agrobacterium tumefaciens F2 and Bacillus sphaeicus F6 were immobilized onto mycelial pellets to investigate the bioflocculant-producing potential of this combined organism and the corresponding flocculating efficiency. The atomic force microscope ( AFM) images of mycelial surface indicate that the mycelia pellet can immobilize bioflocculant-producing bacteria F2 and F6 as a biomass carrier. The flocculating efficiency of bioflocculant produced by this combined organism was studied under the optimum flocculating conditions obtained by Response Surface Methodology ( RSM ) . The fermentation yield of the combined mycelial pellet is about 2. 6 g / L,which is higher than that of the free bacteria ( only 2. 2 g / L) . Flocculating efficiency of the combined mycelial pellet was comparable with that of bioflocculant generated by the free bacteria. The bioflocculant yield is enhanced and the flocculating efficiency of the co-culture is uninfluenced after immobilized with mycelial pellet as a carrier. In conclusion,the mycelial pellet is feasible as a biomass carrier for the immobilization of bioflocculant-producing bacteria.
基金Project supported by the National Natural Science Foundation of China (No.50578008)
文摘An analytical method was derived for the thermal consolidation of layered, saturated porous half-space to variable thermal loading with time. In the coupled governing equations of linear thermoelastic media, the influences of thermo-osmosis effect and thermal filtration effect were introduced. Solutions in Laplace transform space were first obtained and then numerically inverted. The responses of a double-layered porous space subjected to exponential decaying thermal loading were studied. The influences of the differences between the properties of the two layers (e.g., the coefficient of thermal consolidation, elastic modulus) on thermal consolidation were discussed. The studies show that the coupling effects of displacement and stress fields on temperature field can be completely neglected, however, the the thermal responses. effect has an obvious influence on
基金the National High Technology Research and Development Program of China(Grant No.2004AA601020)
文摘To lower the costs of wastewater treatment, the submerged hollow fiber ultrafiltration membrane was employed to reuse the filter backwash water and settling tank sludge water. Experimental study indicates that the submerged hollow fiber uhrafihration membrane can condense the concentration of sludge from 0. 1% -0. 3% to 2.5%. At 20 ℃, the system can operate continuously for 80 clays with daily online backwashing with chemical additions only once, and the membrane flux can be recovered up to 97% by using NaClO and NaOH as chemical additions. The results show that the membrane flux is mainly affected by temperature,and has a positive lin- ear relation to temperature with a slope of 0. 368. After treated by submerged hollow fiber uhrafihration membrane, the effluent can reach the National Standard for Drinking Water( GB5749 -85 ) , especially for the sludge water from sedimentation tanks and the backwashing Water from filters in water supply plants.
基金Project (51774231) supported by the National Natural Science Foundation of ChinaProject (2022JQ-443) supported by the Natural Science Basic Research Program of Shaanxi,ChinaProject (22JK0416) supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department。
基金supported by Chongqing Municipal Natural Science Foundation of General Program(CSTB2022NSCQMSX1093)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202200701)China Postdoctoral Science Foundation(2021M703487).
文摘Two-Line Element(TLE)datasets are the only orbital data source of Earth-orbiting space objects for many civil users for their research and applications.The datasets have uneven qualities that may affect the reliability of the propagated positions of space objects using a single TLE.The least squares approach to use multiple TLEs also suffers from the poor quality of some TLEs,and reliable error information cannot be available.This paper proposes a simplex algorithm to estimate an optimal TLE from multiple TLEs and obtain the uncertainty of each element.It is a derivative-free technique that can deal with various orbit types.Experiments have demonstrated that using the TLE estimated from the simplex method is more reliable,stable,and effective than those from the batch least squares method.As an application example,the optimal TLE and its uncertainty are used for predicting the fallen area,keeping the actual fallen site in the prediction areas.
基金National Natural Science Foundation of China(No.52278235)Science and Technology Program of Hunan Provincial Department of Transportation(No.202309),China.
文摘This research aims to develop an advanced deep learning-based ensemble algorithm,utilizing environmental temperature and solar radiation as feature factors,to conduct hourly temperature field predictions for steel-concrete composite decks(SCCDs).The proposed model comprises feature parameter lag selection,two non-stationary time series decomposition methods(empirical mode decomposition(EMD)and time-varying filtering-based empirical mode decomposition(TVFEMD)),and a stacking ensemble prediction model.To validate the proposed model,five machine learning(ML)models(random forest(RF),support vector regression(SVR),multilayer perceptron(MLP),gradient boosting regression(GBR),and extreme gradient boosting(XGBoost))were tested as base learners and evaluations were conducted within independent,mixed,and ensemble frameworks.Finally,predictions are made based on engineering cases.The results indicate that consideration of lag variables and modal decomposition can significantly improve the prediction performance of learners,and the stacking framework,which combines multiple learners,achieves superior prediction results.The proposed method demonstrates a high degree of predictive robustness and can be applied to statistical analysis of the temperature field in SCCDs.Incorporating time lag features helps account for the delayed heat dissipation phenomenon in concrete,while decomposition techniques assist in feature extraction.
基金financially supported by the National Natural Science Foundation of China (No.52225606)。
文摘To promote charge transfer and separation for efficient photocatalysis,a direct Z-scheme heterostructure was constructed by coupling polymeric carbon nitride(PCN) and WO_(3).Interestingly,the obtained PCN/WO_(3)Z-scheme heterostructure could photocataly tic ally produce hydrogen and value-added chemicals(e.g.,formate and acetate) by reforming of plastic polylactic acid(PLA) in alkaline aqueous condition.By optimizing WO_(3) contents and reaction conditions,the obtained PCN/WO_(3)heterostructure exhibits much increased photocatalytic activity for PLA photoreforming under visible light,with hydrogen evolution rate reaching 402.90 μmol·g~(-1)·h~(-1),which is 3.5 times that of PCN.It is revealed that the Z-scheme charge transfer between PCN and WO_(3) mainly contributes to the promoted charge separation and thus the improved photocatalytic activity.Moreover,with h+and·OH experimentally evidenced as the predominant active species,a possible reaction pathway for the reforming of PLA into value-added chemicals(e.g.,formate and acetate)over PCN/WO_(3) Z-scheme heterostructure is cleared by monitoring the reaction intermediates and radicals.This work paves a carbon neutrality and scalable route toward the synergistical production of hydrogen and value-added chemicals by utilizing and recycling plastic waste.
基金the National Natural Science Foundation of China(Nos.51678546 and 41630318)the Chinese Universities Scientific Fund of China University of Geosciences(Wuhan)the Major Science and Technology Program for Water Pollution Control and Treatment(No.2018 ZX 07110004)。
文摘Extracellular polymeric substances(EPS)form a stable gel-like structure to combine with water molecules through steric hindrance,making the mechanical dewatering of wastewater sludge considerably difficult.Coagulation/flocculation has been widely applied in improving the sludge dewatering performance,while sludge properties(organic fraction and solution chemistry conditions)are highly changeable and have important effects on sludge flocculation process.In this work,the alkalinity effects on sludge conditioning with hydroxy-aluminum were comprehensively investigated,and the interaction mechanisms between EPS and hydroxy-aluminum with different speciation were unraveled.The results showed that the effectiveness of hydroxy-aluminum conditioning gradually deteriorated with increase in alkalinity.Meanwhile,the polymeric hydroxy-aluminum(Al 13)and highly polymerized hydroxy-aluminum(Al 30)were hydrolysed and converted into amorphous aluminum hydroxide(Al(OH)3),which changed the flocculation mechanism from charge neutralization and complexing adsorption to hydrogen bond interaction.Additionally,both Al 13 and Al 30 showed higher binding capacity for proteins and polysaccharides in EPS than monomeric aluminum and Al(OH)3.Al 13 and Al 30 coagulation changed the secondary structure of proteins in EPS,which caused a gelation reaction to increase molecular hydrophobicity of proteins and consequently sludge dewaterability.This study provided a guidance for optimizing the hydroxy-aluminum flocculation conditioning of sludge with high solution alkalinity.
基金This research was financially supported by the National Natural Science Foundation of China(Grant Nos.51678119 and 51808254)the Science and Technology Development Program of Jilin Province(Nos.20180201016SF and 20180101079JC)the Scientific Research Foundation from Education Department of Jilin Province(Nos.JJKH20180453KJ and JJKH20180454KJ).
文摘Aluminum ions produced by aluminum mining,electrolytic industry and aluminum-based coagulants can enter wastewater treatment plants and interact with activated sludge.They can subsequently contribute to the removal of suspended solids and affect activated sludge flocculation,as well as nitrogen and phosphorus removal.In this study,the effects of Al^3+on pollutant removal,sludge flocculation and the composition and structure of extracellular polymeric substances(EPS)were investigated under anaerobic,anoxic and oxic conditions.Results demonstrated that the highest chemical oxygen demand(COD)and total nitrogen(TN)removal efficiencies were detected for an Al^3+concentration of 10 mg/L.In addition,the maximal dehydrogenase activity and sludge flocculation were also observed at this level of Al^3+.The highest removal efficiency of total phosphorus(TP)was achieved at an Ar+concentration of30 mg/L.The flocculability of sludge in the anoxic zone was consistently higher than that in the anaerobic and oxic zones.The addition of Al^3+promoted the secretion of EPS.Tryptophan-like fluorescence peaks were detected in each EPS layer in the absence of Al^3+.At the Al^3+concentration of 10 mg/L,fulvic acid and tryptophan fluorescence peaks began to appear while the majority of protein species and the highest microbial activity were also detected.Low Al^3+concentrations(<10 mg/L)could promote the removal efficiencies of COD and TN,yet excessive Al^3+levels(>10 mg/L)weakened microbial activity.Higher Al^3+concentrations(>30 mg/L)also inhibited the release of phosphorus in the anaerobic zone by reacting with PO4^3-.
文摘Numerical simulation of stepped channel flow was conducted using turbulence models based on the VOF technique. Stepped channel flow is a complicated air-water two-phase flow with free surface, which can be divided into three flow regimes: skimming flow, nappe flow and transition flow. The characteristics of skimming flow over mild stepped channel was investigated, including friction factors, air concentration profiles velocity field, clear-water and bulked depths, static pressure, etc. Smooth channel flow was also simulated to compare the hydraulic characteristics of the stepped channel flow with the smooth one. Comparisons between the computed and the measured were made. Furthermore, comparison of the computed air concentration with Straub and Anderson's data was also performed. The Fluent 6.1 software was employed to conduct this numerical simulation work.