Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particula...Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particularly in regions with limited diagnostic resources like Pakistan.This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context.The research involves experimentation with VGG16 and MobileNet models,exploring different batch sizes,optimizers,and learning rate schedulers.In addition,the“Orange”machine learning tool is employed to evaluate classifier performance and automated image processing capabilities are utilized within the tool.The findings unequivocally establish VGG16 as the most effective classifier with a 5-fold cross-validation approach.Specifically,VGG16,with a batch size of 2 and the Adam optimizer,trained for 100 epochs,achieves a remarkable validation accuracy of 99% and a testing accuracy of 87%.Furthermore,the model achieves an F1 score of 88%,precision of 85%,and recall of 90% on test images.To validate the practical applicability of the VGG16 model with 5-fold cross-validation,the study conducts further testing on a dataset sourced fromautism centers in Pakistan,resulting in an accuracy rate of 85%.This reaffirms the model’s suitability for real-world ASD detection.This research offers valuable insights into classifier performance,emphasizing the potential of machine learning to deliver precise and accessible ASD diagnoses via facial image analysis.展开更多
Lung cancer is a leading cause of global mortality rates.Early detection of pulmonary tumors can significantly enhance the survival rate of patients.Recently,various Computer-Aided Diagnostic(CAD)methods have been dev...Lung cancer is a leading cause of global mortality rates.Early detection of pulmonary tumors can significantly enhance the survival rate of patients.Recently,various Computer-Aided Diagnostic(CAD)methods have been developed to enhance the detection of pulmonary nodules with high accuracy.Nevertheless,the existing method-ologies cannot obtain a high level of specificity and sensitivity.The present study introduces a novel model for Lung Cancer Segmentation and Classification(LCSC),which incorporates two improved architectures,namely the improved U-Net architecture and the improved AlexNet architecture.The LCSC model comprises two distinct stages.The first stage involves the utilization of an improved U-Net architecture to segment candidate nodules extracted from the lung lobes.Subsequently,an improved AlexNet architecture is employed to classify lung cancer.During the first stage,the proposed model demonstrates a dice accuracy of 0.855,a precision of 0.933,and a recall of 0.789 for the segmentation of candidate nodules.The suggested improved AlexNet architecture attains 97.06%accuracy,a true positive rate of 96.36%,a true negative rate of 97.77%,a positive predictive value of 97.74%,and a negative predictive value of 96.41%for classifying pulmonary cancer as either benign or malignant.The proposed LCSC model is tested and evaluated employing the publically available dataset furnished by the Lung Image Database Consortium and Image Database Resource Initiative(LIDC-IDRI).This proposed technique exhibits remarkable performance compared to the existing methods by using various evaluation parameters.展开更多
Cooperative access among user devices by sharing wireless access bandwidth opens a new paradigm in heterogeneous networks. However, how to stimulate cooperative relay nodes forwarding service data for others and alloc...Cooperative access among user devices by sharing wireless access bandwidth opens a new paradigm in heterogeneous networks. However, how to stimulate cooperative relay nodes forwarding service data for others and allocating corresponding bandwidth to support it are two key issues in the cooperative access. This paper proposes a Stackelberg game based framework which is benefit participants including relay nodes and client nodes. This framework generalizes the pricing based bandwidth allocation algorithm by the Stackelberg game model, which optimizes the profit of the cooperative relay nodes while guaranteeing the bandwidth requirements of client nodes, We transform the profit maximization problem into a convex problem and solve it using the convex optimization method. The simulation results demonstrate that the proposed framework and corresponding algorithms outperform the bidding weight proportional fairness and fixed value bandwidth allocation ones significantly.展开更多
文摘Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particularly in regions with limited diagnostic resources like Pakistan.This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context.The research involves experimentation with VGG16 and MobileNet models,exploring different batch sizes,optimizers,and learning rate schedulers.In addition,the“Orange”machine learning tool is employed to evaluate classifier performance and automated image processing capabilities are utilized within the tool.The findings unequivocally establish VGG16 as the most effective classifier with a 5-fold cross-validation approach.Specifically,VGG16,with a batch size of 2 and the Adam optimizer,trained for 100 epochs,achieves a remarkable validation accuracy of 99% and a testing accuracy of 87%.Furthermore,the model achieves an F1 score of 88%,precision of 85%,and recall of 90% on test images.To validate the practical applicability of the VGG16 model with 5-fold cross-validation,the study conducts further testing on a dataset sourced fromautism centers in Pakistan,resulting in an accuracy rate of 85%.This reaffirms the model’s suitability for real-world ASD detection.This research offers valuable insights into classifier performance,emphasizing the potential of machine learning to deliver precise and accessible ASD diagnoses via facial image analysis.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RP23044).
文摘Lung cancer is a leading cause of global mortality rates.Early detection of pulmonary tumors can significantly enhance the survival rate of patients.Recently,various Computer-Aided Diagnostic(CAD)methods have been developed to enhance the detection of pulmonary nodules with high accuracy.Nevertheless,the existing method-ologies cannot obtain a high level of specificity and sensitivity.The present study introduces a novel model for Lung Cancer Segmentation and Classification(LCSC),which incorporates two improved architectures,namely the improved U-Net architecture and the improved AlexNet architecture.The LCSC model comprises two distinct stages.The first stage involves the utilization of an improved U-Net architecture to segment candidate nodules extracted from the lung lobes.Subsequently,an improved AlexNet architecture is employed to classify lung cancer.During the first stage,the proposed model demonstrates a dice accuracy of 0.855,a precision of 0.933,and a recall of 0.789 for the segmentation of candidate nodules.The suggested improved AlexNet architecture attains 97.06%accuracy,a true positive rate of 96.36%,a true negative rate of 97.77%,a positive predictive value of 97.74%,and a negative predictive value of 96.41%for classifying pulmonary cancer as either benign or malignant.The proposed LCSC model is tested and evaluated employing the publically available dataset furnished by the Lung Image Database Consortium and Image Database Resource Initiative(LIDC-IDRI).This proposed technique exhibits remarkable performance compared to the existing methods by using various evaluation parameters.
基金supported by the National Natural Science Foundation of China (60971125)National Key Program of New Generation of Broadband Wireless Mobile Communication Networks(2011ZX03005-004-02)+2 种基金Funds for Creative Research Groups of China (61121001)EU FP7 Project EVANS (2010-269323)Program for Changjiang Scholars and Innovative Research Team in University (IRT1049)
文摘Cooperative access among user devices by sharing wireless access bandwidth opens a new paradigm in heterogeneous networks. However, how to stimulate cooperative relay nodes forwarding service data for others and allocating corresponding bandwidth to support it are two key issues in the cooperative access. This paper proposes a Stackelberg game based framework which is benefit participants including relay nodes and client nodes. This framework generalizes the pricing based bandwidth allocation algorithm by the Stackelberg game model, which optimizes the profit of the cooperative relay nodes while guaranteeing the bandwidth requirements of client nodes, We transform the profit maximization problem into a convex problem and solve it using the convex optimization method. The simulation results demonstrate that the proposed framework and corresponding algorithms outperform the bidding weight proportional fairness and fixed value bandwidth allocation ones significantly.