Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion are studied. The determining equation of Lie symmetry of Nielsen equations for a ...Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion are studied. The determining equation of Lie symmetry of Nielsen equations for a variable mass holonomic system of relative motion under the infinitesimal transformations of groups is given. The expression of generalized Hojman conserved quantity deduced directly from Lie symmetry for a variable mass holonomic system of relative motion is obtained. An example is given to illustrate the application of the results.展开更多
The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Ni...The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Lie symmetry, and the expression of the Hojman conserved quantity deduced directly from the Lie symmetry for the system are obtained. An example is given to illustrate the application of the results.展开更多
The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equ...The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and the criterion of the Mei symmetry,and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained.An example is given to illustrate the application of the results.展开更多
Sliding wall-climbing robot (SWCR) is applied worldwide for its continuous motion, however, considerable air leakage causes two problems: great power consumption and big noise, and they constraint the robot's comp...Sliding wall-climbing robot (SWCR) is applied worldwide for its continuous motion, however, considerable air leakage causes two problems: great power consumption and big noise, and they constraint the robot's comprehensive performance. So far, effective theoretical model is still lacked to solve the problems. The concept of SWCR's adsorption performance is presented, and the techniques of improving utilization rate of given adsorption force and utilization rate of power are studied respectively to improve SWCR's adsorption performance. The effect of locomotion mechanism selection and seal's pressure allocation upon utilization rate of given adsorption force is discussed, and the theoretical way for relevant parameters optimization are provided. The directions for improving utilization rate of power are pointed out based on the detail analysis results of suction system's thermodynamics and hydrodynamics. On this condition, a design method for SWCR-specific impeller is presented, which shows how the impeller's key parameters impact its aerodynamic performance with the aid of computational fluid dynamics (CFD) simulations. The robot prototype, BIT Climber, is developed, and its functions such as mobility, adaptability on wall surface, payload, obstacle ability and wall surface inspection are tested. Through the experiments for the adhesion performance of the robot adsorption system on the normal wall surface, at the impeller's rated rotating speed, the total adsorption force can reach 237.2 N, the average effective negative pressure is 3.02 kPa and the design error is 3.8% only, which indicates a high efficiency. Furthermore, it is found that the robot suction system's static pressure efficiency reaches 84% and utilization rate of adsorption force 81% by the experiment. This thermodynamics model and SWCR-specific impeller design method can effectively improve SWCR's adsorption performance and expand this robot applicability on the various walls. A sliding wall-climbing robot with high adhesion efficiency is developed, and this robot has the features of light body in weight, small size in structure and good capability in payload.展开更多
Lower limb exoskeleton robots offer an effective treatment for patients with lower extremity dysfunction.In order to improve the rehabilitation training effect based on the human motion mechanism,this paper proposes a...Lower limb exoskeleton robots offer an effective treatment for patients with lower extremity dysfunction.In order to improve the rehabilitation training effect based on the human motion mechanism,this paper proposes a humanoid sliding mode neural network controller based on the human gait.A humanoid model is constructed based on the human mechanism,and the parameterised gait trajectory is used as target to design the humanoid control system for robots.Considering the imprecision of the robot dynamics model,the neural network is adopted to compensate for the uncertain part of the model and improve the model accuracy.Moreover,the sliding mode control in the system improves the response speed,tracking performance,and stability of the control system.The Lyapunov stability analysis proves the stability of the control system theoretically.Meanwhile,an evaluation method using the similarity function is improved based on joint angle,velocity,and acceleration to evaluate the comfort of humans in rehabilitation training more reasonably.Finally,to verify the effectiveness of the proposed method,simulations are carried out based on experimental data.The results show that the control system could accurately track the target trajectory,of which the robot is highly similar to the human.展开更多
A type of new conserved quantity deduced from Mei symmetry for Nielsen equations in a holonomic system with unilateral constraints is investigated. Nielsen equations and differential equations of motion for the holono...A type of new conserved quantity deduced from Mei symmetry for Nielsen equations in a holonomic system with unilateral constraints is investigated. Nielsen equations and differential equations of motion for the holonomic mechanical system with unilateral constraints are established. The definition and the criterion of Mei symmetry for Nielsen equations in the holonomic systems with unilateral constraints under the infinitesimal transformations of Lie group are also given. The expressions of the structural equation and a type of new conserved quantity of Mei symmetry for Nielsen equations in the holonomic system with unilateral constraints are obtained. An example is given to illustrate the application of the results.展开更多
Combining oven controlled technique,digital compensation,high-resolution frequency difference measurement and self-calibration technique,a new design method of precise oven controlled crystal oscillator(OCXO) is pro...Combining oven controlled technique,digital compensation,high-resolution frequency difference measurement and self-calibration technique,a new design method of precise oven controlled crystal oscillator(OCXO) is proposed.Fine compensation is made in the vicinity of the crystal temperature inflection point by using the non-real-time temperature compensation strategy,and self-calibration system is integrated in the crystal.The method improves the digital compensated phase noise,simplifies the traditional OCXO development system,reduces the cost and shortens the developing cycle.Experiment results show that with a standard reference signal and self-calibration updated data,the oscillator can work stable and achieve its best performence.The performance index of crystal oscillator had an improvement with one to two orders of magnitude on the basis of original technical index.The method is widely used in the improvement of high-end crystal oscillator and atomic clock.展开更多
Ni self-assembly has been performed on Ga N(0001), Si(111) and sapphire(0001) substrates. Scanning electron microscopy(SEM) images verify that the Si(111) substrate leads to failure of the Ni assembly due to Si–N int...Ni self-assembly has been performed on Ga N(0001), Si(111) and sapphire(0001) substrates. Scanning electron microscopy(SEM) images verify that the Si(111) substrate leads to failure of the Ni assembly due to Si–N interlayer formation; the GaN(0001) and sapphire(0001) substrates promote assembly of the Ni particles. This indicates that the GaN/sapphire(0001) substrates are fit for Ni self-assembly. For the Ni assembly process on Ga N/sapphire(0001) substrates,three differences are observed from the x-ray diffraction(XRD) patterns:(i) Ni self-assembly on the sapphire(0001) needs a 900?C annealing temperature, lower than that on the GaN(0001) at 1000?C, and loses the Ni network structure stage;(ii) the Ni particle shape is spherical for the sapphire(0001) substrate, and truncated-cone for the GaN(0001) substrate; and(iii) a Ni–N interlayer forms between the Ni particles and the GaN(0001) substrate, but an interlayer does not appear for the sapphire(0001) substrate. All these differences are attributed to the interaction between the Ni and the Ga N/sapphire(0001) substrates. A model is introduced to explain this mechanism.展开更多
The global stabilization problem of nonlinear systems with uncertain structure is dealt with. Based on control Lyapunov function (CLF), a sufficient and necessary condition for Lyapunov stabilization is given. From ...The global stabilization problem of nonlinear systems with uncertain structure is dealt with. Based on control Lyapunov function (CLF), a sufficient and necessary condition for Lyapunov stabilization is given. From the condition, several simply sufficient conditions for the globally asymptotical stability are deduced. A state feedback control law is designed to globally asymptotically stabilize the equilibrium of the closed system. Last, a simulation shows the effectiveness of the method.展开更多
This paper deals with the robust stabilization and passivity of general nonlinear systems with structural uncertainty. By using Lyapunov function, it verifies that under some conditions the robust passivity implies th...This paper deals with the robust stabilization and passivity of general nonlinear systems with structural uncertainty. By using Lyapunov function, it verifies that under some conditions the robust passivity implies the zero-state detectability, Furthermore, it also implies the robust stabilization for such nonlinear systems. We then establish a stabilization method for the nonlinear systems with structural uncertainty. The smooth state feedback law can be constructed with the solution of an equation. Finally, it is worth noting that the main contribution of the paper establishes the relation between robust passivity and feedback stabilization for the general nonlinear systems with structural uncertainty. The simulation shows the effectiveness of the method.展开更多
This paper deals with the robust stabilization problem for a class of nonlinear systems with structural uncertainty. Based on robust control Lyapunov function, a sufficient and necessary condition for a function to be...This paper deals with the robust stabilization problem for a class of nonlinear systems with structural uncertainty. Based on robust control Lyapunov function, a sufficient and necessary condition for a function to be a robust control Lyapunov function is given. From this condition, simply sufficient condition for the robust stabilization (robust practical stabilization) is deduced. Moreover, if the equilibrium of the closed-loop system is unique, the existence of such a robust control Lyapunnv function will also imply robustly globally asymptotical stabilization. Then a continuous state feedback law can be constructed explicitly. The simulation shows the effectiveness of the method.展开更多
Convolutional Neural Networks (CNN) has been a very popular area in large scale data processing and many works have demonstrate that CNN is a very promising tool in many field, e.g., image classification and image ret...Convolutional Neural Networks (CNN) has been a very popular area in large scale data processing and many works have demonstrate that CNN is a very promising tool in many field, e.g., image classification and image retrieval. Theoretically, CNN features can become better and better with the increase of CNN layers. But on the other side more layers can dramatically increase the computational cost on the same condition of other devices. In addition to CNN features, how to dig out the potential information contained in the features is also an important aspect. In this paper, we propose a novel approach utilize deep CNN to extract image features and then introduce a Regularized Locality Preserving Indexing (RLPI) method which can make features more differentiated through learning a new space of the data space. First, we apply deep networks (VGG-net) to extract image features and then introduce Regularized Locality Preserving Indexing (RLPI) method to train a model. Finally, the new feature space can be generated through this model and then can be used to image retrieval.展开更多
The highly oriented perovskite-phase PT/PZT/PT ferroelectric thin film was pre- pared by sol-gel method. The domain structures and polarization retention proper- ties were investigated by scanning force microscopy. Th...The highly oriented perovskite-phase PT/PZT/PT ferroelectric thin film was pre- pared by sol-gel method. The domain structures and polarization retention proper- ties were investigated by scanning force microscopy. The amplitude and phase images of piezoresponse show complex various contrasts of dark, bright and gray. The complex variation of contrast in piezoresponse images results from the per- plexing orientation of grains and arrangement of domains in the ferroelectric films. The bright and dark areas in phase images correspond to top-to-bottom and bot- tom-to-top polarization oriented c-domain, respectively. The gray areas are c-domains with the polarization vector deviating from the direction normal to the film plane. The surface potential images of EFM are bright contrast, which is due to positive charges trapped on the film surface after being polarized by positive volt- age. And the brighter contrast is obtained from the higher electric field. The time-dependent surface potential images and line potential profiles show that the potential decays with time. And the decay in the region polarized by higher electric field is faster, especially at 15 min. This indicates that the polarization retention is related to the polarized electric field. Better retention properties may be obtained from a proper polarized electric field.展开更多
Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the ...Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the complicated bit allocation to match the different signal-to-noise-ratios(SNRs) of different sub-channels. In this paper,we propose a geometric mean decomposition(GMD)-based hybrid precoding to avoid the complicated bit allocation. Specifically,we seek a pair of analog and digital precoders sufficiently close to the unconstrained fully digital GMD precoder. To achieve this, we fix the analog precoder to design the digital precoder, and vice versa. The analog precoder is designed based on the orthogonal matching pursuit(OMP) algorithm, while GMD is used to obtain the digital precoder. Simulations show that the proposed GMD-based hybrid precoding achieves better performance than the conventional SVD-based hybrid precoding with only a slight increase in complexity.展开更多
The traditional HB-weighted time-delay estimation (TDE) method degenerates under the impulsive noise environment. Two new time-delay estimation methods are proposed based on fractional lower order statistics (FLOS...The traditional HB-weighted time-delay estimation (TDE) method degenerates under the impulsive noise environment. Two new time-delay estimation methods are proposed based on fractional lower order statistics (FLOS) according to the impulsive characteristics of fractional lower order α-stable noises. Theoretic analysis and computer simulations indicate that the proposed covariation based HB weighted (COV-HB) algorithm can suppress impulsive noises in one received signal for 1 ≤α≤ 2, whereas the other proposed fractional lower order eovariancebased HB weighted (FLOC-HB) algorithm has robust performance under arbitrary impulsive noise conditions for the whole range of 0 〈α≤ 2.展开更多
With the improvement of the accuracy of atomic frequency standard and satellite navigation,the high-resolution phase comparison method is necessary.Using the phase synchronous detection principle,a super-high resoluti...With the improvement of the accuracy of atomic frequency standard and satellite navigation,the high-resolution phase comparison method is necessary.Using the phase synchronous detection principle,a super-high resolution phase comparison method between frequency standards is proposed based on the greatest common factor frequency,phase group processing and a common frequency source and so on.This method is mainly dependent on the stability of the common frequency standard and its frequency.The ±1 count error can be eliminated effectively.Therefore,higher than 1 ps resolution can be easily reached with a simple instrument.Experimental results show higher than 10-15/h precision can be obtained in the long-term frequency standard comparison and the measuring precision can reach 10-17 for several days of comparison.展开更多
This paper describes an ethylene glycol(EG)-assisted approach to the ultralong Sb2S3 nanowires,formed by a simple hydrothermal reaction between SbCl3 and Na2S in the presence of distilled water.Transmission electron...This paper describes an ethylene glycol(EG)-assisted approach to the ultralong Sb2S3 nanowires,formed by a simple hydrothermal reaction between SbCl3 and Na2S in the presence of distilled water.Transmission electron microscopy and scanning electron microscopy studies indicate that these Sb2S3 nanowires possess a diameter around 200 nm and length up to 100 μ m.High-resolution transmission electron microscopy and selected area electron diffraction studies reveal that each Sb2S3 nanowire is a single-crystal along the [001] direction.The possible formation mechanism of the nanowires was discussed.The effects of volume ratio of ethylene glycol/water on the morphology of Sb2S3 nanowires were also investigated.Diffuse reflectance spectrum result shows that the final products have an apparent blue shift by quantum size effect.展开更多
We summarize our work of the optoelectronic devices based on Germanium-tin (GeSn) alloys assisted with the Si3N4liner stressor in mid-infrared (MIR) domains. The device characteristics are thoroughly analyzed by t...We summarize our work of the optoelectronic devices based on Germanium-tin (GeSn) alloys assisted with the Si3N4liner stressor in mid-infrared (MIR) domains. The device characteristics are thoroughly analyzed by the strain distribution,band structure, and absorption characteristics. Numerical and analytical methods show that with optimal structural pa-rameters, the device performance can be further improved and the wavelength application range can be extended to 2~5 μm in the mid-infrared spectra. It is demonstrated that this proposed strategy provides an effective technique for the strained-GeSn devices in future optical designs, which will be competitive for the optoelectronics applications in mid-infrared wavelength.展开更多
Within the heat and moisture system that is complex in the air-conditioning rooms of large space building,the existence of delay makes the stability cushion reduced,which thereby makes the estimated parameters more co...Within the heat and moisture system that is complex in the air-conditioning rooms of large space building,the existence of delay makes the stability cushion reduced,which thereby makes the estimated parameters more complex.In this paper,particle swarm optimization(PSO)is integrated with least square(LS)to improve least squares(short for PSOLS).LS,optimized by PSO,identifies the heat and moisture system parameters of the existence of delay in the air-conditioning rooms by sampling input and output data.In view of this delay system,the identification is an effective solution to nonlinear system which LS can not identify directly.The simulation results show that PSOLS is quite effective,and its global optimization has great potential.展开更多
A stable diode-pumped passively Q-switched Tm,Ho:YVO4 laser with Cr:ZnS saturable absorber is reported. The shortest pulse duration of -500 ns with the central wavelength of 2041 nm is obtained at the pump power of ...A stable diode-pumped passively Q-switched Tm,Ho:YVO4 laser with Cr:ZnS saturable absorber is reported. The shortest pulse duration of -500 ns with the central wavelength of 2041 nm is obtained at the pump power of 7.4 W, corresponding to the pulse energy of 3.5 μd at repetition rate of 65 kHz.展开更多
文摘Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion are studied. The determining equation of Lie symmetry of Nielsen equations for a variable mass holonomic system of relative motion under the infinitesimal transformations of groups is given. The expression of generalized Hojman conserved quantity deduced directly from Lie symmetry for a variable mass holonomic system of relative motion is obtained. An example is given to illustrate the application of the results.
文摘The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Lie symmetry, and the expression of the Hojman conserved quantity deduced directly from the Lie symmetry for the system are obtained. An example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11142014 and 61178032)
文摘The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and the criterion of the Mei symmetry,and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained.An example is given to illustrate the application of the results.
基金supported by Ministry of Housing and Urban-Rural Development of China (Grant No. 2007-k8-6)National Natural Science of Foundation of China (Grant No. 60975070)
文摘Sliding wall-climbing robot (SWCR) is applied worldwide for its continuous motion, however, considerable air leakage causes two problems: great power consumption and big noise, and they constraint the robot's comprehensive performance. So far, effective theoretical model is still lacked to solve the problems. The concept of SWCR's adsorption performance is presented, and the techniques of improving utilization rate of given adsorption force and utilization rate of power are studied respectively to improve SWCR's adsorption performance. The effect of locomotion mechanism selection and seal's pressure allocation upon utilization rate of given adsorption force is discussed, and the theoretical way for relevant parameters optimization are provided. The directions for improving utilization rate of power are pointed out based on the detail analysis results of suction system's thermodynamics and hydrodynamics. On this condition, a design method for SWCR-specific impeller is presented, which shows how the impeller's key parameters impact its aerodynamic performance with the aid of computational fluid dynamics (CFD) simulations. The robot prototype, BIT Climber, is developed, and its functions such as mobility, adaptability on wall surface, payload, obstacle ability and wall surface inspection are tested. Through the experiments for the adhesion performance of the robot adsorption system on the normal wall surface, at the impeller's rated rotating speed, the total adsorption force can reach 237.2 N, the average effective negative pressure is 3.02 kPa and the design error is 3.8% only, which indicates a high efficiency. Furthermore, it is found that the robot suction system's static pressure efficiency reaches 84% and utilization rate of adsorption force 81% by the experiment. This thermodynamics model and SWCR-specific impeller design method can effectively improve SWCR's adsorption performance and expand this robot applicability on the various walls. A sliding wall-climbing robot with high adhesion efficiency is developed, and this robot has the features of light body in weight, small size in structure and good capability in payload.
基金National Natural Science Foundation of China,Grant/Award Numbers:No.62073297,No.U1813201。
文摘Lower limb exoskeleton robots offer an effective treatment for patients with lower extremity dysfunction.In order to improve the rehabilitation training effect based on the human motion mechanism,this paper proposes a humanoid sliding mode neural network controller based on the human gait.A humanoid model is constructed based on the human mechanism,and the parameterised gait trajectory is used as target to design the humanoid control system for robots.Considering the imprecision of the robot dynamics model,the neural network is adopted to compensate for the uncertain part of the model and improve the model accuracy.Moreover,the sliding mode control in the system improves the response speed,tracking performance,and stability of the control system.The Lyapunov stability analysis proves the stability of the control system theoretically.Meanwhile,an evaluation method using the similarity function is improved based on joint angle,velocity,and acceleration to evaluate the comfort of humans in rehabilitation training more reasonably.Finally,to verify the effectiveness of the proposed method,simulations are carried out based on experimental data.The results show that the control system could accurately track the target trajectory,of which the robot is highly similar to the human.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11142014 and 61178032)the Scientific Research and Innovation Plan for College Graduates of Jiangsu Province of China(Grant No.CSLX12_0720)
文摘A type of new conserved quantity deduced from Mei symmetry for Nielsen equations in a holonomic system with unilateral constraints is investigated. Nielsen equations and differential equations of motion for the holonomic mechanical system with unilateral constraints are established. The definition and the criterion of Mei symmetry for Nielsen equations in the holonomic systems with unilateral constraints under the infinitesimal transformations of Lie group are also given. The expressions of the structural equation and a type of new conserved quantity of Mei symmetry for Nielsen equations in the holonomic system with unilateral constraints are obtained. An example is given to illustrate the application of the results.
基金Supported by the National Natural Science Foundation of China (10978017)the Open Fund of Key Laboratory of Time and Frequency Primary Standards (CAS)+2 种基金the Postdoctoral Grant of China (94469)the Basic and Advanced Technology Research Foundation of Hennan Province (122300410169)the Fundamental Research Funds for the Central Universities
文摘Combining oven controlled technique,digital compensation,high-resolution frequency difference measurement and self-calibration technique,a new design method of precise oven controlled crystal oscillator(OCXO) is proposed.Fine compensation is made in the vicinity of the crystal temperature inflection point by using the non-real-time temperature compensation strategy,and self-calibration system is integrated in the crystal.The method improves the digital compensated phase noise,simplifies the traditional OCXO development system,reduces the cost and shortens the developing cycle.Experiment results show that with a standard reference signal and self-calibration updated data,the oscillator can work stable and achieve its best performence.The performance index of crystal oscillator had an improvement with one to two orders of magnitude on the basis of original technical index.The method is widely used in the improvement of high-end crystal oscillator and atomic clock.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61473266 and 61673404)the Program for Science&Technology Innovation Talents in Universities of Henan Province,China(Grant No.16HASTIT033)+2 种基金the Science and Technique Foundation of Henan Province,China(Grant Nos.132102210521,152102210153,182102210516,and 172102210601)the Key Program in Universities of Henan Province,China(Grant No.17B520044)the Science and Technique Project of the China National Textile and Apparel Council(Grant No.2018104)
文摘Ni self-assembly has been performed on Ga N(0001), Si(111) and sapphire(0001) substrates. Scanning electron microscopy(SEM) images verify that the Si(111) substrate leads to failure of the Ni assembly due to Si–N interlayer formation; the GaN(0001) and sapphire(0001) substrates promote assembly of the Ni particles. This indicates that the GaN/sapphire(0001) substrates are fit for Ni self-assembly. For the Ni assembly process on Ga N/sapphire(0001) substrates,three differences are observed from the x-ray diffraction(XRD) patterns:(i) Ni self-assembly on the sapphire(0001) needs a 900?C annealing temperature, lower than that on the GaN(0001) at 1000?C, and loses the Ni network structure stage;(ii) the Ni particle shape is spherical for the sapphire(0001) substrate, and truncated-cone for the GaN(0001) substrate; and(iii) a Ni–N interlayer forms between the Ni particles and the GaN(0001) substrate, but an interlayer does not appear for the sapphire(0001) substrate. All these differences are attributed to the interaction between the Ni and the Ga N/sapphire(0001) substrates. A model is introduced to explain this mechanism.
基金This project was supported by the National Natural Science Foundation of Fujian province (A0510025) .
文摘The global stabilization problem of nonlinear systems with uncertain structure is dealt with. Based on control Lyapunov function (CLF), a sufficient and necessary condition for Lyapunov stabilization is given. From the condition, several simply sufficient conditions for the globally asymptotical stability are deduced. A state feedback control law is designed to globally asymptotically stabilize the equilibrium of the closed system. Last, a simulation shows the effectiveness of the method.
基金Sponsored by the Natural Science of Foundation of Fujian Province(Grant No.A0510025).
文摘This paper deals with the robust stabilization and passivity of general nonlinear systems with structural uncertainty. By using Lyapunov function, it verifies that under some conditions the robust passivity implies the zero-state detectability, Furthermore, it also implies the robust stabilization for such nonlinear systems. We then establish a stabilization method for the nonlinear systems with structural uncertainty. The smooth state feedback law can be constructed with the solution of an equation. Finally, it is worth noting that the main contribution of the paper establishes the relation between robust passivity and feedback stabilization for the general nonlinear systems with structural uncertainty. The simulation shows the effectiveness of the method.
基金Sponsored by the Natural Science Foundation of Zhejiang Province in China(Grant No. Y105141).
文摘This paper deals with the robust stabilization problem for a class of nonlinear systems with structural uncertainty. Based on robust control Lyapunov function, a sufficient and necessary condition for a function to be a robust control Lyapunov function is given. From this condition, simply sufficient condition for the robust stabilization (robust practical stabilization) is deduced. Moreover, if the equilibrium of the closed-loop system is unique, the existence of such a robust control Lyapunnv function will also imply robustly globally asymptotical stabilization. Then a continuous state feedback law can be constructed explicitly. The simulation shows the effectiveness of the method.
文摘Convolutional Neural Networks (CNN) has been a very popular area in large scale data processing and many works have demonstrate that CNN is a very promising tool in many field, e.g., image classification and image retrieval. Theoretically, CNN features can become better and better with the increase of CNN layers. But on the other side more layers can dramatically increase the computational cost on the same condition of other devices. In addition to CNN features, how to dig out the potential information contained in the features is also an important aspect. In this paper, we propose a novel approach utilize deep CNN to extract image features and then introduce a Regularized Locality Preserving Indexing (RLPI) method which can make features more differentiated through learning a new space of the data space. First, we apply deep networks (VGG-net) to extract image features and then introduce Regularized Locality Preserving Indexing (RLPI) method to train a model. Finally, the new feature space can be generated through this model and then can be used to image retrieval.
基金Supported by the National Natural Science Foundation of China (Grant No. 60171012)the Key Program of the National Natural Science Foundation of China (Grant No. 90407023)
文摘The highly oriented perovskite-phase PT/PZT/PT ferroelectric thin film was pre- pared by sol-gel method. The domain structures and polarization retention proper- ties were investigated by scanning force microscopy. The amplitude and phase images of piezoresponse show complex various contrasts of dark, bright and gray. The complex variation of contrast in piezoresponse images results from the per- plexing orientation of grains and arrangement of domains in the ferroelectric films. The bright and dark areas in phase images correspond to top-to-bottom and bot- tom-to-top polarization oriented c-domain, respectively. The gray areas are c-domains with the polarization vector deviating from the direction normal to the film plane. The surface potential images of EFM are bright contrast, which is due to positive charges trapped on the film surface after being polarized by positive volt- age. And the brighter contrast is obtained from the higher electric field. The time-dependent surface potential images and line potential profiles show that the potential decays with time. And the decay in the region polarized by higher electric field is faster, especially at 15 min. This indicates that the polarization retention is related to the polarized electric field. Better retention properties may be obtained from a proper polarized electric field.
基金supported by the National Natural Science Foundation of China for Outstanding Young Scholars (Grant No. 61722109)the National Natural Science Foundation of China (Grant No. 61571270)the Royal Academy of Engineering through the UK–China Industry Academia Partnership Programme Scheme (Grant No. UK-CIAPP\49)
文摘Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the complicated bit allocation to match the different signal-to-noise-ratios(SNRs) of different sub-channels. In this paper,we propose a geometric mean decomposition(GMD)-based hybrid precoding to avoid the complicated bit allocation. Specifically,we seek a pair of analog and digital precoders sufficiently close to the unconstrained fully digital GMD precoder. To achieve this, we fix the analog precoder to design the digital precoder, and vice versa. The analog precoder is designed based on the orthogonal matching pursuit(OMP) algorithm, while GMD is used to obtain the digital precoder. Simulations show that the proposed GMD-based hybrid precoding achieves better performance than the conventional SVD-based hybrid precoding with only a slight increase in complexity.
基金supported by the National Natural Science Foundation of China (60372081)China Postdoctoral Science Foundation (20070410347)the Doctor Startup Fund of Liaoning Province (20071076)
文摘The traditional HB-weighted time-delay estimation (TDE) method degenerates under the impulsive noise environment. Two new time-delay estimation methods are proposed based on fractional lower order statistics (FLOS) according to the impulsive characteristics of fractional lower order α-stable noises. Theoretic analysis and computer simulations indicate that the proposed covariation based HB weighted (COV-HB) algorithm can suppress impulsive noises in one received signal for 1 ≤α≤ 2, whereas the other proposed fractional lower order eovariancebased HB weighted (FLOC-HB) algorithm has robust performance under arbitrary impulsive noise conditions for the whole range of 0 〈α≤ 2.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10978017 and 60772135the Open Fund of Key Laboratory of Time and Frequency Primary Standards(CAS)+2 种基金the Postdoctoral Foundation of China under No 94469the Basic and Advanced Technology Research Foundation of Hennan Province under Grant No 122300410169the Fundamental Research Funds for the Central Universities.
文摘With the improvement of the accuracy of atomic frequency standard and satellite navigation,the high-resolution phase comparison method is necessary.Using the phase synchronous detection principle,a super-high resolution phase comparison method between frequency standards is proposed based on the greatest common factor frequency,phase group processing and a common frequency source and so on.This method is mainly dependent on the stability of the common frequency standard and its frequency.The ±1 count error can be eliminated effectively.Therefore,higher than 1 ps resolution can be easily reached with a simple instrument.Experimental results show higher than 10-15/h precision can be obtained in the long-term frequency standard comparison and the measuring precision can reach 10-17 for several days of comparison.
基金Funded by the National Natural Science Foundation of China (No.50672055)
文摘This paper describes an ethylene glycol(EG)-assisted approach to the ultralong Sb2S3 nanowires,formed by a simple hydrothermal reaction between SbCl3 and Na2S in the presence of distilled water.Transmission electron microscopy and scanning electron microscopy studies indicate that these Sb2S3 nanowires possess a diameter around 200 nm and length up to 100 μ m.High-resolution transmission electron microscopy and selected area electron diffraction studies reveal that each Sb2S3 nanowire is a single-crystal along the [001] direction.The possible formation mechanism of the nanowires was discussed.The effects of volume ratio of ethylene glycol/water on the morphology of Sb2S3 nanowires were also investigated.Diffuse reflectance spectrum result shows that the final products have an apparent blue shift by quantum size effect.
基金The authors thank National Natural Science Foundation of China (Grant No. 61534004, 61604112 and 61622405).
文摘We summarize our work of the optoelectronic devices based on Germanium-tin (GeSn) alloys assisted with the Si3N4liner stressor in mid-infrared (MIR) domains. The device characteristics are thoroughly analyzed by the strain distribution,band structure, and absorption characteristics. Numerical and analytical methods show that with optimal structural pa-rameters, the device performance can be further improved and the wavelength application range can be extended to 2~5 μm in the mid-infrared spectra. It is demonstrated that this proposed strategy provides an effective technique for the strained-GeSn devices in future optical designs, which will be competitive for the optoelectronics applications in mid-infrared wavelength.
基金supported by the Natural Science Foundation of Beijing,China (No.0872008)the sub-topics of the National Natural Science Foundation of China (Grant No.080709615).
文摘Within the heat and moisture system that is complex in the air-conditioning rooms of large space building,the existence of delay makes the stability cushion reduced,which thereby makes the estimated parameters more complex.In this paper,particle swarm optimization(PSO)is integrated with least square(LS)to improve least squares(short for PSOLS).LS,optimized by PSO,identifies the heat and moisture system parameters of the existence of delay in the air-conditioning rooms by sampling input and output data.In view of this delay system,the identification is an effective solution to nonlinear system which LS can not identify directly.The simulation results show that PSOLS is quite effective,and its global optimization has great potential.
基金Supported by the National Natural Science Foundation of China under Grant No 61308009, the Postdoctoral Science Foundation of China under Grant No 2013M540288, the Fundamental Research Funds for the Central Universities under Grant No HIT.NSRIF.2014044, and the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310.
文摘A stable diode-pumped passively Q-switched Tm,Ho:YVO4 laser with Cr:ZnS saturable absorber is reported. The shortest pulse duration of -500 ns with the central wavelength of 2041 nm is obtained at the pump power of 7.4 W, corresponding to the pulse energy of 3.5 μd at repetition rate of 65 kHz.