Gallium antimonide(GaSb)-based nanostructures have been reported via various vapor-phase synthetic routes while there is not a report on the growth of GaSb nanostructures via a complete one-step solution-phase synthet...Gallium antimonide(GaSb)-based nanostructures have been reported via various vapor-phase synthetic routes while there is not a report on the growth of GaSb nanostructures via a complete one-step solution-phase synthetic strategy.Herein we report the design and synthesis of tadpole-like Ga/GaSb nanostructures by a one-step solution-phase synthetic route typically from the precursors of commercial triphenyl antimony(Sb(Ph)_(3))and trimethylaminogallium(Ga(NMe_(2))_(3))at 260°C in 1-octadecene.The GaSb nanocrystals are grown based on a solution–liquid–solid(SLS)mechanism with zinc blende phase,and their size and shape can be controlled in the procedures via manipulating the reaction conditions.Meanwhile,the tadpole-like Ga/GaSb nanostructures can be applied for the fabrication of a GaSb/Si nanostructured heterojunction-like photodetector over silicon wafer,which demonstrates excellent photoresponse and detection performances from wavelength of 405 to 1,064 nm with high photoresponding rate.Typically,the photodetector exhibits a high responsivity of 18.9 A·W^(−1),a superior detectivity of 1.1×10^(13)Jones,and an ultrafast response speed of 44 ns.The present work provides a new strategy to group III–V antimonide-based semiconducting nanostructures that are capable for the fabrication of photodetector with broadband,high-detectivity,and high-speed photodetecting performances.展开更多
基金This work was supported by grants from the National Basic Research Program of China (No.2012CB922001),the National Natural Science Foundation of China(Nos.21571166,61076040,51271173,and 21071136),the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.2012011111006),the Nature Science Foundation of Anhui Province (No.J2014AKZR0059),and the Fundamental Research Funds for the Central Universities (Nos.JZ2015HGXJ0182,JZ2014HGBZ0063,and WK6030000019).
基金supported by the National Natural Science Foundation of China(Nos.U1932150 and 21571166)Anhui Provincial Natural Science Foundation(No.1908085QB72).
文摘Gallium antimonide(GaSb)-based nanostructures have been reported via various vapor-phase synthetic routes while there is not a report on the growth of GaSb nanostructures via a complete one-step solution-phase synthetic strategy.Herein we report the design and synthesis of tadpole-like Ga/GaSb nanostructures by a one-step solution-phase synthetic route typically from the precursors of commercial triphenyl antimony(Sb(Ph)_(3))and trimethylaminogallium(Ga(NMe_(2))_(3))at 260°C in 1-octadecene.The GaSb nanocrystals are grown based on a solution–liquid–solid(SLS)mechanism with zinc blende phase,and their size and shape can be controlled in the procedures via manipulating the reaction conditions.Meanwhile,the tadpole-like Ga/GaSb nanostructures can be applied for the fabrication of a GaSb/Si nanostructured heterojunction-like photodetector over silicon wafer,which demonstrates excellent photoresponse and detection performances from wavelength of 405 to 1,064 nm with high photoresponding rate.Typically,the photodetector exhibits a high responsivity of 18.9 A·W^(−1),a superior detectivity of 1.1×10^(13)Jones,and an ultrafast response speed of 44 ns.The present work provides a new strategy to group III–V antimonide-based semiconducting nanostructures that are capable for the fabrication of photodetector with broadband,high-detectivity,and high-speed photodetecting performances.