期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Distributed anonymous data perturbation method for privacy-preserving data mining 被引量:4
1
作者 Feng LI Jin MA Jian-hua LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第7期952-963,共12页
Privacy is a critical requirement in distributed data mining. Cryptography-based secure multiparty computation is a main approach for privacy preserving. However, it shows poor performance in large scale distributed s... Privacy is a critical requirement in distributed data mining. Cryptography-based secure multiparty computation is a main approach for privacy preserving. However, it shows poor performance in large scale distributed systems. Meanwhile, data perturbation techniques are comparatively efficient but are mainly used in centralized privacy-preserving data mining (PPDM). In this paper, we propose a light-weight anonymous data perturbation method for efficient privacy preserving in distributed data mining. We first define the privacy constraints for data perturbation based PPDM in a semi-honest distributed environment. Two protocols are proposed to address these constraints and protect data statistics and the randomization process against collusion attacks: the adaptive privacy-preserving summary protocol and the anonymous exchange protocol. Finally, a distributed data perturbation framework based on these protocols is proposed to realize distributed PPDM. Experiment results show that our approach achieves a high security level and is very efficient in a large scale distributed environment. 展开更多
关键词 Privacy-preserving data mining (PPDM) Distributed data mining Data perturbation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部