期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Vacancies and interfaces engineering of core-shell heterostuctured NiCoP/NiO as trifunctional electrocatalysts for overall water splitting and zinc-air batteries 被引量:1
1
作者 Xiaolin Hu Jichuan Fan +4 位作者 Ronghua Wang Meng Li Shikuan Sun Chaohe Xu Fusheng Pan 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期601-611,共11页
The electronic structures and properties of electrocatalysts,which depend on the physicochemical structure and metallic element components,could significantly affect their electrocatalytic performance and their future... The electronic structures and properties of electrocatalysts,which depend on the physicochemical structure and metallic element components,could significantly affect their electrocatalytic performance and their future applications in Zn-air battery(ZAB)and overall water splitting(OWS).Here,by combining vacancies and heterogeneous interfacial engineering,three-dimensional(3D)core-shell NiCoP/NiO heterostructures with dominated oxygen vacancies have been controllably in-situ grown on carbon cloth for using as highly efficient electrocatalysts toward hydrogen and oxygen electrochemical reactions.Theoretical calculation and electrochemical results manifest that the hybridization of NiCoP core with NiO shell produces a strong synergistic electronic coupling effect.The oxygen vacancy can enable the emergence of new electronic states within the band gap,crossing the Fermi levels of the two spin components and optimizing the local electronic structure.Besides,the hierarchical core-shell NiCoP/NiO nanoarrays also endow the catalysts with multiple exposed active sites,faster mass transfer behavior,optimized electronic strutures and improved electrochemical performance during ZAB and OWS applications. 展开更多
关键词 DFT calculations Interface catalysis HETEROSTRUCTURES Overall water splitting Zn–air batteries
下载PDF
Boosting low-temperature selective catalytic reduction of NO_(x)with NH_(3)of V_(2)O_(5)/TiO_(2)catalyst via B-doping 被引量:2
2
作者 Hanghang Li Wei Zhao +3 位作者 Licheng Wu Qian Wang Danhong Shang Qin Zhong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期377-383,共7页
A series of B-doped V_(2)O_(5)/TiO_(2) catalysts has been prepared the by sol-gel and impregnation methods to investigate the influence of B-doping on the selective catalytic reduction(SCR)of NOxwith NH_(3).X-ray diff... A series of B-doped V_(2)O_(5)/TiO_(2) catalysts has been prepared the by sol-gel and impregnation methods to investigate the influence of B-doping on the selective catalytic reduction(SCR)of NOxwith NH_(3).X-ray diffraction,Brunauer-Emmett-Teller specific surface area,scanning electron microscope,X-ray photoelectron spectroscopy,temperature-programmed reduction of H_(2) and temperature-programmed desorption of NH_(3)technology were used to study the effect of the B-doping on the structure and NH_(3)-SCR activity of V_(2)O_(5)/TiO_(2) catalysts.The experimental results demonstrated that the introduction of B not only improved the low-temperature SCR activity of the catalysts,but also broadened the activity temperature window.The best SCR activity in the entire test temperature range is obtained for VTiB_(2.0) with 2.0%doping amount of B and the NO_(x) conversion rate is up to 94.3%at 210℃.The crystal phase,specific surface area,valence state reducibility and surface acidity of the active components for the as-prepared catalysts are significantly affected by the B-doping,resulting in an improved NH_(3)-SCR performance.These results suggest that the V_(2)O_(5)/TiO_(2) catalysts with an appropriate B content afford good candidates for SCR in the low temperature window. 展开更多
关键词 B-DOPING CATALYST SCR NO_(x) Support
下载PDF
Ligand engineering of colloid quantum dots and their application in all-inorganic tandem solar cells 被引量:1
3
作者 Fen Qiao Yi Xie +1 位作者 Zhankun Weng Huaqiang Chu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期230-239,共10页
How to effectively utilize the energy of the broad spectrum of sunlight is one of the basic problems in the research of tandem solar cells. Due to their size effect, quantum confinement effect and coupling effect, col... How to effectively utilize the energy of the broad spectrum of sunlight is one of the basic problems in the research of tandem solar cells. Due to their size effect, quantum confinement effect and coupling effect, colloidal quantum dots(QDs) exhibit new physical properties that bulk materials don’t possess.CdX(X = Se, S, etc.) and Pb X(X = Se, S, etc.) QDs prepared by hot-injection methods have been widely studied in the areas of photovolitaic devices. However, the surfactants surrounding QDs seriously hinder the charge transport of QDs based solar cells. Therefore, how to fabricate high-performance tandem solar cells via ligands engineering has become a major challenge. In this paper, the latest progress of colloidal QDs in the research of all-inorganic tandem solar cells was summarized. Firstly, the improvement of QDs surface ligands and the optimization of ligands engineering were discussed, and the control of the physical properties of QDs films were realized. From the aspects of colloidal QDs, ligand engineering, and solar cell preparation, the future development direction of colloidal QDs solar cells was proposed, providing technical guidances for the preparation of low-cost and high-efficiency nanocrystalline solar cells. 展开更多
关键词 Hot-injection method Colloidal quantum dots Ligand engineering Tandem solar cell
下载PDF
Effect of supports on the redox performance of pyrite cinder in chemical looping combustion
4
作者 Zhong Ma Chuan Yuan +2 位作者 Shuai Zhang Yonggang Lu Junhui Xiong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第9期168-174,共7页
Chemical looping combustion(CLC)is a clean and efficient flame-free combustion technology,which combust the fuels by lattice oxygen from a solid oxygen carrier with inherent CO_(2)capture.The development of oxygen car... Chemical looping combustion(CLC)is a clean and efficient flame-free combustion technology,which combust the fuels by lattice oxygen from a solid oxygen carrier with inherent CO_(2)capture.The development of oxygen carriers with low cost and high redox performance is crucial to the whole efficiency of CLC process.As the solid by-product from the sulfuric acid production,pyrite cinder presented excellent redox performance as an oxygen carrier in CLC process.The main components in pyrite cinder are Fe_(2)O_(3),CaSO_(4),Al_(2)O_(3)and SiO_(2)in which Fe_(2)O_(3)is the active component to provide lattice oxygen.In order to systematic investigate the functions of supports(CaSO_4,Al_(2)O_(3)and SiO_(2))in pyrite cinder,three oxygen carriers(Fe_(2)O_(3)-CaSO_(4),Fe_(2)O_(3)-Al_(2)O_(3)and Fe_(2)O_(3)-SiO_(2))were prepared and evaluated in this study.The results showed that Fe_(2)O_(3)-CaSO_(4) displayed high redox activity and cycling stability in the multiple redox cycles.However,both Fe_(2)O_(3)-Al_(2)O_(3)and Fe_(2)O_(3)-SiO_(2)experienced serious deactivation during redox reactions.It indicated that the inert Fe-Si solid solution(Fe_(2)SiO_(4))was formed in the spent Fe_(2)O_(3)-SiO_(2)sample,which decreased the oxygen carrying capacity of this sample.The XPS results showed that the oxygen species on the surface of Fe_(2)O_(3)-CaSO_(4) could be fully recovered after the 20 redox cycles.It can be concluded that CaSO_(4) is the key to the high redox activity and cycling stability of pyrite cinder. 展开更多
关键词 Chemical looping Pyrite cinder Supports FIXED-BED Redox performance Waste treatment
下载PDF
Strategies for enhancing conductivity of colloidal nanocrystals and their photoelectronic applications
5
作者 Fen Qiao Yi Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期29-42,I0002,共15页
Semiconductor colloidal nanocrystals(NCs)have size-and shape-dependent optoelectronic properties due to the quantum confinement effect,and are considered to be promising optoelectronic materials.Among them,Ⅱ-Ⅵ(CdSe,... Semiconductor colloidal nanocrystals(NCs)have size-and shape-dependent optoelectronic properties due to the quantum confinement effect,and are considered to be promising optoelectronic materials.Among them,Ⅱ-Ⅵ(CdSe,CdS,CdTe,etc.)andⅣ-Ⅵ(PbSe,PbTe,PbS,etc.)have been widely studied as representative colloidal NCs.However,the surfactant used in its synthesis progress results in the NCs surface covered by an insulating shell,which greatly affects the exciton separation and carrier transport of colloidal NCs-based photovoltaic devices.Therefore,how to design high-efficiency optoelectronic devices by improving the transport performance of carriers has been a great challenge.The key issues in the research ofⅡ-Ⅵ(CdSe,CdS,CdTe,etc.)andⅣ-Ⅵ(PbSe,PbTe,PbS,etc.)colloidal NCs were summarized,including synthesis strategy,morphology/size adjustment,surface ligand design,improvement of conductivity and their optoelectronic properties.The influence of surface ligands on the stability and dispersion of NCs was firstly introduced,and then strategies of improving electrical conductivity of NCs were discussed,such as ligands exchange,doping,self-assembly and plasmons,which provided a good foundation for the subsequent preparation of optoelectronic devices.The future development direction of NCs optoelectronic devices is expounded from the aspects of materials composition,comprehensive preparation and flexible processing of colloidal NCs. 展开更多
关键词 Colloidal nanocrystal Surface engineering CONDUCTIVITY Photoelectronic device
下载PDF
A Computational Study of Cavitation Model Validity Using a New Quantitative Criterion
6
作者 Hagar Alm El-Din ZHANG Yu-Sheng Medhat Elkelawy 《Chinese Physics Letters》 SCIE CAS CSCD 2012年第6期193-195,共3页
The predictive capability of two different numerical cavitation models accounting for the onset and development of cavitation inside real-sized diesel nozzle holes is assessed on the basis of the referenced experiment... The predictive capability of two different numerical cavitation models accounting for the onset and development of cavitation inside real-sized diesel nozzle holes is assessed on the basis of the referenced experimental data.The calculations performed indicate that for the same model assumptions,numerical implementation,discretization scheme,and turbulence grid resolution model,the predictions for differently applied physical cavitation submodels are phenomenologically distinct from each other.We present a comparison by applying a new criterion for the quantitative comparison between the results obtained from both cavitation models. 展开更多
关键词 CAVITATION CRITERION TURBULENCE
下载PDF
Three Dimensional Numerical Simulation of Convection-Condensation of Vapor with High Concentration Air in Tube with Inserts
7
作者 崔永章 田茂诚 +2 位作者 张林华 李广鹏 朱建宾 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第4期686-692,共7页
A three-dimensional numerical model is presented for studying the convection-condensation of mixture with vapor in a tube with edgefold-twisted-tape inserts under transition flow.According to the diffusion layer theor... A three-dimensional numerical model is presented for studying the convection-condensation of mixture with vapor in a tube with edgefold-twisted-tape inserts under transition flow.According to the diffusion layer theory and laminar species transport,a condensation model with user defined function is proposed and compared with heat and mass transfer analogy and experimental test.With the condensation model,the influences of gap width and op-erating parameters on thermal-hydrodynamics performance are simulated.As the gap width increases,convection and condensation heat transfer increase initially and then decrease,while convection heat transfer increases sharply and then decreases slightly.Increasing vapor fraction has a significant effect on condensation heat transfer but it has little effect on convective heat transfer.With the increase of inner wall temperature both convection and condensa-tion heat transfer all decrease and the ratio of condensation to total heat decrease dramatically.Increases inlet tem-perature mainly affects convection heat transfer. 展开更多
关键词 condensation model numerical simulation transition flow
下载PDF
Investigation of the redox performance of pyrite cinder calcined at different temperature in chemical looping combustion
8
作者 Zhong Ma Guofu Liu +1 位作者 Hui Zhang Yonggang Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第8期98-105,共8页
As an industrial solid waste,pyrite cinder exhibited excellent reactivity and cycle stability in chemical looping combustion.Prior to the experiment,oxygen carriers often experienced a high temperature calcination pro... As an industrial solid waste,pyrite cinder exhibited excellent reactivity and cycle stability in chemical looping combustion.Prior to the experiment,oxygen carriers often experienced a high temperature calcination process to stabilize the physico-chemical properties,which presented significant influence on the redox performance of oxygen carriers.However,the effect of calcination temperature on the cyclic reaction performance of pyrite cinder has not been studied in detail.In this work,the effect of calcination temperature on the redox activity and attrition characteristic of pyrite cinder were studied in a fluidizedbed reactor using CH_(4) as fuel.A series of pyrite cinder samples were prepared by controlling the calcination temperature.The redox activity and attrition rate of the obtained pyrite cinder samples were investigated deeply.The results showed that calcination temperature displayed significant impact on the redox performance of pyrite cinder.Considering CH_(4) conversion(80%–85%)and attrition resistance,the pyrite cinder calcined at 1050℃ presented excellent redox properties.In the whole experiment process,the CO_(2) selectivity of the pyrite cinder samples were not affected by the calcination temperature and were still close to 100%.The results can provide reference for optimizing the calcination temperature of pyrite cinder during chemical looping process. 展开更多
关键词 Chemical looping combustion Pyrite cinder Calcination temperature CO_(2)capture Attrition Waste treatment
下载PDF
Cobalt disulfide/carbon nanofibers with mesoporous heterostructure and excellent hydrophilicity for high energy density asymmetric supercapacitor 被引量:1
9
作者 Wenjie Liu Fen Qiao +9 位作者 Jing Yang Jiaren Yuan Yi Xie Tao Wang Jinzhi Hu Jihua Zheng Rui Ren Xiaomin Kang Yan Zhao Jiangwei Zhang 《Nano Research》 SCIE EI CSCD 2023年第7期10401-10411,共11页
Herein,a unique mesoporous heterostructure(average pore size:15 nm)cobalt disulfide/carbon nanofibers(CoS_(2)/PCNFs)composite with excellent hydrophilicity(contact angle:23.5°)is prepared using polyethylene glyco... Herein,a unique mesoporous heterostructure(average pore size:15 nm)cobalt disulfide/carbon nanofibers(CoS_(2)/PCNFs)composite with excellent hydrophilicity(contact angle:23.5°)is prepared using polyethylene glycol(PEG)as a pore-forming agent.The CoS_(2)/PCNF electrode exhibits excellent cycle stability(95.2%of initial specific capacitance at 10 A·g^(-1)after 8000 cycles),good rate performance(46.5%at 10 A·g^(-1)),and high specific capacity(86.1 mAh·g^(-1)at 1 A·g^(-1),about 688.8 F·g^(-1)at 1 A·g^(-1)).Density functional theory(DFT)simulation elucidates that CoS_(2)tends to transfer substantial charges to CNF.As the center of positive charge,CoS_(2)is more likely to capture negative ions in the electrolyte,thus accelerating the ion diffusion process.The excellent properties of the electrode material can not only accelerate the electrochemical reaction kinetics,but also provide abundant redox-active sites and a high Faradaic capacity for the entire electrode due to the synergistic contributions of CoS_(2)nanoparticles,mesoporous heterostructure of PCNF,and admirable hydrophilicity of the composite material.A CoS_(2)/PCNF-0.25//AC(AC:activated carbon)asymmetric supercapacitor is assembled using CoS_(2)/PCNF-0.25 as the positive electrode and AC as the negative electrode,which possesses a high energy density(35.5 Wh·kg^(-1)at a power density of 824 W·kg^(-1))and superior cycling stability(maintaining over 98%of initial capacitance after 2000 cycles).In addition,the unique CoS_(2)/PCNF electrode is expected to be widely used in other electrochemical energy storage devices,such as lithium-ion batteries,sodium-ion batteries,lithium-sulfur batteries,etc. 展开更多
关键词 supercapacitor cobalt disulfide carbon nanofibers porosity electrostatic spinning density functional theory(DFT)simulation
原文传递
Turning gas hydrate nucleation with oxygen-containing groups on size-selected graphene oxide flakes
10
作者 Huiquan Liu Changrui Shi +6 位作者 Zherui Chen Shuai Wang Mingjun Yang Jiafei Zhao Cong Chen Yongchen Song Zheng Ling 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期351-358,I0009,共9页
Gas hydrate is a promising alternative for gas capture and storage due to its high gas storage capacity achieved with only structured water molecules.Nucleation is the critical controlling step in gas hydrate formatio... Gas hydrate is a promising alternative for gas capture and storage due to its high gas storage capacity achieved with only structured water molecules.Nucleation is the critical controlling step in gas hydrate formation.Adding an alien solid surface is an effective approach to regulate gas hydrate nucleation.However,how the solid surface compositions control the gas hydrate nucleation remains unclear.Benefiting from the fact that the surface compositions of graphene oxide(GO)can be finely tuned,we report the effect of functional groups of size-selected GO flakes on methane hydrate nucleation.The carbonyl and carboxyl of GO flakes showed a more prominent promotion for methane hydrate nucleation than the hydroxyl of GO flakes.Surface energy,zeta potential,Raman spectra,and molecular dynamics simulation analysis were used to reveal the regulation mechanism of the functional groups of size-selected GO flakes on methane hydrate nucleation.The GO flakes with abundant carbonyl and carboxyl exhibited higher charge density than those enriched in hydroxyl.The negatively charged GO flakes can induce water molecules to form an ordered hydrogen-bonded arrangement via charge-dipole interactions.Therefore,the water molecules surrounding the carboxyl and carbonyl showed a more ordered hydrogen-bonded structure than those around the hydroxyl of GO flakes.The ordered water arrangement,similar to methane hydrate cages,significantly accelerated methane hydrate nucleation.Our study shows how the surface chemistry of solids control gas hydrate nucleation and sheds light on the design of effective heterogeneous nucleators for gas hydrate. 展开更多
关键词 Methane hydrate Methane storage Energy storage Surface energy Hydrogen-bonded water
下载PDF
Polaron mobility modulation by bandgap engineering in black phaseα-FAPbI_(3)
11
作者 Chunwei Wang Zeyu Zhang +8 位作者 Zhuang Xiong Xingyu Yue Bo Zhang Tingyuan jia Zhengzheng Liu Juan Du Yuxin Leng Kuan Sun Ruxin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期175-180,I0005,共7页
Lead halide hybrid perovskites(LHP)have emerged as one of the most promising photovoltaic materials for their remarkable solar energy conversion ability.The transportation of the photoinduced carriers in LHP could scr... Lead halide hybrid perovskites(LHP)have emerged as one of the most promising photovoltaic materials for their remarkable solar energy conversion ability.The transportation of the photoinduced carriers in LHP could screen the defect recombination with the help of the large polaron formation.However,the physical insight of the relationship between the superior optical-electronic performance of perovskite and its polaron dynamics related to the electron-lattice strong coupling induced by the substitution engineering is still lack of investigation.Here,the bandgap modulated thin films ofα-FAPbI_(3)with different element substitution is investigated by the time resolved Terahertz spectroscopy.We find the polaron recombination dynamics could be prolonged in LHP with a relatively smaller bandgap,even though the formation of polaron will not be affected apparently.Intuitively,the large polaron mobility in(FAPb I_(3))0.95(MAPbI_(3))0.05thin film is~30%larger than that in(FAPb I_(3))0.85(MAPbBr_(3))0.15.The larger mobility in(FAPb I_(3))0.95(MAPb I_(3))0.05could be assigned to the slowing down of the carrier scattering time.Therefore,the physical origin of the higher carrier mobility in the(FAPb I_(3))0.95(MAPbI_(3))0.05should be related with the lattice distortion and enhanced electron–phonon coupling induced by the substitution.In addition,(FAPbI_(3))0.95(MAPbI_(3))0.05will lose fewer active carriers during the polaron cooling process than that in(FAPb I_(3))0.85(MAPbBr_(3)),indicating lower thermal dissipation in(FAPbI_(3))0.95(MAPbI_(3))0.05.Our results suggest that besides the smaller bandgap,the higher polaron mobility improved by the substitution engineering inα-FAPbI_(3)can also be an important factor for the high PCE of the black phaseα-FAPbI_(3)based solar cell devices. 展开更多
关键词 Perovskites POLARON MOBILITY Terahertz spectroscopy
下载PDF
A novel one-dimensional Co-phenylmercaptotetrazole MOF templated fabrication of N,S co-doped Co_(9)S_(8)@NSC porous nanotubes for oxygen evolution reaction
12
作者 Peixue Fu Ruize Yin +8 位作者 Shitan Yan Yue Qian Qin Cheng Hanni Yang Siyang Li Weiwei Xiong Junhao Zhang Aihua Yuan Ting Bian 《Science China Materials》 SCIE EI CAS CSCD 2024年第10期3206-3214,共9页
In this work,we report a novel one-dimensional metal-organic framework(MOF)templated for the synthesis of transition metal sulfides with excellent oxygen evolution reaction(OER)performance via a self-sulfidation proce... In this work,we report a novel one-dimensional metal-organic framework(MOF)templated for the synthesis of transition metal sulfides with excellent oxygen evolution reaction(OER)performance via a self-sulfidation process,eliminating the need for additional sulfur sources.After pyrolysis,MOFs containing Co ions as the metal nodes and 1-phenyl-5-mercaptotetrazole(PMTA)as the ligand were transformed to Co_(9)S_(8)nanoparticles,which were encapsulated in a nitrogen and sulfur dual-doped carbon(Co_(9)S_(8)@NSC)matrix.Additionally,PMTA,as a ligand,possesses the unique advantage of forming porous coordination polymers with a wide range of metals(e.g.,Fe,Ni,and Cu),enabling the versatile synthesis of transition metal sulfide electrocatalysts.Consequently,when served as the electrocatalyst for OER,the N,S co-doped Co_(9)S_(8)@NSC porous nanotubes exhibited excellent OER performance with the overpotential of only 248 mV at 10 mA cm^(−2)and long-term stability.These works provide new insights and inspiration for the rational design and development of non-precious metal-based sulfides with practical potential applications. 展开更多
关键词 electrocatalysts transition metal sulfides N S codoped carbon composites oxygen evolution reaction one-dimensional metal-organic frameworks
原文传递
Life Cycle Assessment Analysis and Comparison of 1000 MW S-CO_(2)Coal Fired Power Plant and 1000 MW USC Water-Steam Coal-Fired Power Plant 被引量:3
13
作者 LI Mingjia WANG Ge +2 位作者 XU Jinliang NI Jingwei SUN Enhui 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第2期463-484,共22页
The objective of this paper is to understand the benefits that one can achieve for large-scale supercritical CO_(2)(S-CO_(2))coal-fired power plants.The aspects of energy environment and economy of 1000 MW S-CO_(2)coa... The objective of this paper is to understand the benefits that one can achieve for large-scale supercritical CO_(2)(S-CO_(2))coal-fired power plants.The aspects of energy environment and economy of 1000 MW S-CO_(2)coal-fired power generation system and 1000 MW ultra-supercritical(USC)water-steam Rankine cycle coal-fired power generation system are analyzed and compared at the similar main vapor parameters,by adopting the neural network genetic algorithm and life cycle assessment(LCA)methodology.Multi-objective optimization of the 1000 MW S-CO_(2)coal-fired power generation system is further carried out.The power generation efficiency,environmental impact load,and investment recovery period are adopted as the objective functions.The main vapor parameters of temperature and pressure are set as the decision variables.The results are concluded as follows.First,the total energy consumption of the S-CO_(2)coal-fired power generation system is 10.48 MJ/k Wh and the energy payback ratio is 34.37%.The performance is superior to the USC coal-fired power generation system.Second,the resource depletion index of the S-CO_(2)coal-fired power generation system is 4.38μPRchina,90,which is lower than that of the USC coal-fired power generation system,and the resource consumption is less.Third,the environmental impact load of the S-CO_(2)coal-fired power generation system is 0.742 m PEchina,90,which is less than that of the USC coal-fired power generation system,0.783 m PEchina,90.Among all environmental impact types,human toxicity potential HTP and global warming potential GWP account for the most environmental impact.Finally,the investment cost of the S-CO_(2)coal-fired power generation system is generally less than that of the USC coal-fired power generation system because the cost of the S-CO_(2)turbine is only half of the cost of the steam turbine.The optimal turbine inlet temperature T_(5)becomes smaller,and the optimal turbine inlet pressure is unchanged at 622.082°C/30 MPa. 展开更多
关键词 S-CO_(2)power plant ultra-supercritical water-steam Rankine cycle power plant life cycle assessment energy efficiency environment impact economic performance
原文传递
Engineering of Co_(3O)_(4)@Ni_(2)P heterostructure as trifunctional electrocatalysts for rechargeable zinc-air battery and self-powered overall water splitting 被引量:1
14
作者 Xiaolin Hu Tongxin Yang +7 位作者 Zuguang Yang Zongyang Li Ronghua Wang Meng Li Guangsheng Huang Bin Jiang Chaohe Xu Fusheng Pan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第20期19-28,共10页
Rational design of highly efficient,robust and nonprecious electrocatalysts for the oxygen reduction reaction(ORR),oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)is highly demanded and challenging.H... Rational design of highly efficient,robust and nonprecious electrocatalysts for the oxygen reduction reaction(ORR),oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)is highly demanded and challenging.Here,heterostructural Co_(3O)_(4)@Ni_(2)P arrays with numerous reaction sites,unique interfacial electronic structure and fast charge transfer kinetics are developed as electrocatalysts for rechargeable Zn-air batteries and overall water splitting.Both density functional theory calculation and X-ray absorption fine structure analysis manifest that the synergistic structural and abundant electronic modulations interfaces are formed,thus simultaneously promoting the electrocatalytic kinetics,activities and stabilities.Specifically,it can achieve an ultralow overpotential of 270 m V and 28 m V at 10 m A cm^(-2) for OER and HER,respectively.The water electrolyzer delivers a current density of 10 m A cm^(-2) at 1.563 V;furthermore,rechargeable Zn-air batteries triggered by this heterostructure can achieve excellent cyclic stability of 177 h(2 h per cycle)at 10 m A cm^(-2);both devices are superior to the Pt/C+Ir/C.This work not only designs an efficient trifunctional electrocatalyst but also paves an avenue to understand the heterostructure engineering for catalysts development and disclose the underlying relationship of interfacial electronic structures and catalytic properties. 展开更多
关键词 Density functional theory Trifunctional electrocatalysts HETEROSTRUCTURE Zn–air batteries Overall water splitting
原文传递
Hierarchical polypyrrole@cobalt sulfide-based flexible on-chip microsupercapacitors with ultrahigh energy density for selfcharging system 被引量:1
15
作者 Yan Zhao Jihua Zheng +7 位作者 Jing Yang Wenjie Liu Fen Qiao Jiabiao Lian Guochun Li Tao Wang Jiangwei Zhang Limin Wu 《Nano Research》 SCIE EI CSCD 2023年第1期555-563,共9页
Herein,we prepare the unique hierarchical polypyrrole@cobalt sulfide(PPy-hs@CoS)hollow sphere-based nanofilms as interdigitated electrodes for flexible on-chip micro-supercapacitors(MSC).Benefiting from the excellent ... Herein,we prepare the unique hierarchical polypyrrole@cobalt sulfide(PPy-hs@CoS)hollow sphere-based nanofilms as interdigitated electrodes for flexible on-chip micro-supercapacitors(MSC).Benefiting from the excellent flexibility and high electrical conductivity of PPy-hs combined with the great electrochemical activity of CoS,such PPy-hs@CoS composite material can not only inhibit the volume expansion of PPy but also promote the diffusion of the electrolyte ions.The PPy-hs@CoS filmbased electrode delivers a greatly improved specific capacitance and small resistance.Density functional theory calculations infer that OH−prefers to bind to PPy on CoS@PPy and confirms the synergistic effect of each component for enhanced reaction kinetics.A quasi-solid-state on-chip flexible asymmetric MSC based on PPy-hs@CoS and activated carbon(AC)microelectrodes exhibits large areal-specific capacitance(131.9 mF/cm2 at 0.3 mA/cm2),ultrahigh energy density(0.041 mWh/cm2@0.224 mW/cm2 and 25.6 mWh/cm3@140.6 mW/cm3),and long cycle lifespan.We demonstrate the possibility to scale up the PPy-hs@CoS nanofilm microelectrode by arranging two of our asymmetric MSC in series and parallel connections,which respectively increase the output voltage and current.A self-charging system by connecting our asymmetric MSCs with a piece of commercial solar cells is developed as a potential possible mode for future highly durable and high-voltage integrated electronics. 展开更多
关键词 POLYPYRROLE cobalt sulfide adsorption energy on-chip micro-supercapacitor self-charging device
原文传递
Machine Learning is Accelerating Materials Research
16
作者 ZHANG Qi ZHENG Yujie SUN Kuan 《材料导报》 EI CAS CSCD 北大核心 2020年第9期1-2,共2页
The development of artificial intelligence is reshaping our human society.As a branch of artificial intelligence,machine learning can learn from existing data and establish correlations between input data and the outp... The development of artificial intelligence is reshaping our human society.As a branch of artificial intelligence,machine learning can learn from existing data and establish correlations between input data and the output.The performance of the model can be improved through training,helping us to discover hidden laws in the database.Progress has been made in applying machine learning to the field of materials science[1].For example,machine lear-ning is employed to establish the structure-property relationship in various material systems[2-3],quickly screen new materials[4-5],discover novel structures[6]and optimize experimental parameters[7],etc.It seems machine learning is revolutionizing the way of materials research by providing new approaches to materials design,synthesis,characterization,and application[8]. 展开更多
关键词 branch APPLYING INTELLIGENCE
下载PDF
Annealing-free alcohol-processable MoO_(X) anode interlayer enables efficient light utilization in organic photovoltaics
17
作者 Ke Yang Shanshan Chen +8 位作者 Yongli Zhou George Omololu Odunmbaku Zhenghong Xiong Qianguang Yang Ming Wang Zhipeng Kan Zeyun Xiao Shirong Lu Kuan Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期141-146,I0004,共7页
Molybdenum oxide(MoO_(x))is a commonly used hole extraction material in organic photovoltaics.The MoO_(x) interlayer is deposited typically via thermal evaporation in vacuum.To meet the need for rollto-roll manufactur... Molybdenum oxide(MoO_(x))is a commonly used hole extraction material in organic photovoltaics.The MoO_(x) interlayer is deposited typically via thermal evaporation in vacuum.To meet the need for rollto-roll manufacturing,solution processing of MoO_(x) without post-annealing treatment is essential.Herein,we demonstrate an effective approach to produce annealing-free,alcohol-processable MoO_(x) anode interlayers,namely S-MoO_(x),by utilizing the bis(catecholato)diboron(B_(2) Cat_(2))molecule to modify the surface oxygen sites in MoO_(x).The formation of surface diboron-oxygen complex enables the alcohol solubility of S-MoO_(x).An enhanced light utilization is realized in the S-MoO_(x)-based organic photovoltaics.This affords a superior short-circuit current density(Jsc)close to 26 mA cm^(-2) and ultimately a high power-conversion efficiency(PCE)of 15.2%in the representative PM6:Y6 based inverted OPVs,which is one of the highest values in the inverted OPVs using an as-cast S-MoO_(x) anode interlayer. 展开更多
关键词 Solution processable Annealing free Molybdenum oxide Organic solar cell
下载PDF
Self-adhesive and biocompatible dry electrodes with conformal contact to skin for epidermal electrophysiology
18
作者 Xiaoxue Lin Zeping Ou +16 位作者 Xuewei Wang Can Wang Yunfei Ouyang Ibrahim M.Mwakitawa Feng Li Rui Chen Yaru Yue Jihe Tang Wei Fang Shanshan Chen Bing Guo Jianyong Ouyang Tatyana Shumilova Yongli Zhou Liang Wang Chengwu Zhang Kuan Sun 《Interdisciplinary Materials》 EI 2024年第5期775-790,共16页
Long-term biopotential monitoring requires high-performance biocompatible wearable dry electrodes.But currently,it is challenging to establish a form-preserving fit with the skin,resulting in high interface impedance ... Long-term biopotential monitoring requires high-performance biocompatible wearable dry electrodes.But currently,it is challenging to establish a form-preserving fit with the skin,resulting in high interface impedance and motion artifacts.This research aims to present an innovative solution using an all-green organic dry electrode that eliminates the aforementioned challenges.The dry electrode is prepared by introducing biocompatible maltitol into the chosen conductive polymer,poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate).Thanks to the secondary doping and plasticizer effect of maltitol,the dry electrode exhibits good stretchability(62%),strong self-adhesion(0.46 N/cm),high conductivity(102 S/cm),and low Young's modulus(7 MPa).It can always form a conformal contact with the skin even during body movements.Together with good electrical properties,the electrode enables a lower skin contact impedance compared to the current standard Ag/AgCl gel electrode.Consequently,the application of this dry electrode in bioelectrical signal measurement(electromyography,electrocardiography,electroencephalogra-phy)and long-term biopotential monitoring was successfully demonstrated. 展开更多
关键词 biocompatibility conductivity dry electrode self-adhesion Young's modulus
原文传递
Effects of Airfoil-probe Tubes on the Flow Field of a Compressor Cascade 被引量:5
19
作者 MA Hongwei JIN Chao +1 位作者 ZHAO Lianpeng MA Rong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2017年第4期321-330,共10页
To explore the effects of airfoil-probe tubes and its installment position on the flow field of the compressor cas- cade, and find out the mechanism that how the airfoil-probes affect the aerodynamic characteristics o... To explore the effects of airfoil-probe tubes and its installment position on the flow field of the compressor cas- cade, and find out the mechanism that how the airfoil-probes affect the aerodynamic characteristics of the com- pressor cascade, this paper performed both numerical and experimcntal works on the same compressor cascade. The experiment mainly focused on the cases of low Mach number (Ma = 0.1), and cases with different Mach numbers (0.1, 0.3, 0.7) and different incidence angles (-5, 0, 5) are investigated by the numerical method. The case without the airfoil-probe tube was referenced as the baseline, and other three cases with the airfoil-probe tubes installed in different chordwise positions O0%, 50%, 70% of the chord length) were studied. The diameter of the airfoil-probe tube is 3ram, which is configured as 300% amplification of some particular airfoil-probe ac- cording to the geometrical similarity principle. The results show that the airfoil-probe tubes have a negative in- fluenc~ on the flow capacity of the cascade at all investigation points. The separations and the large scale stream- wise vortices that induced by the airfoil-probe tube on the pressure side cause most the losses at the high Mach number. The influence of the airfoil-probe tube on the flow field in the vicinity of the pressure side surface is lo- cal separation at the low Mach number. The airfoil-probe tubes also have a clearly effect on the leakage flow. It decreases the mass flow of the leakage flow and weakens the intensity of the leakage vortex, but enlarges the in- fluence area. The total pressure loss of the case that the tube is installed at the half chordwise position is generally lower than other cases especially at the high Mach number, it can even decrease the losses compared with the ba- sic case. 展开更多
关键词 airfoil-probe compressor cascade installment position 5-hole probe
原文传递
Effects of Squealer Geometry of Turbine Blade Tip on the Tip-Leakage Flow and Loss 被引量:5
20
作者 ZENG Fei ZHANG Weihao +2 位作者 WANG Yufan CAO Xia ZOU Zhengping 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第4期1376-1387,共12页
The effective control of the tip-leakage flow and loss is of great significance to improve the aerodynamic performance of the turbine.In this paper,the evolution mechanism of tip-leakage flow in a transonic high press... The effective control of the tip-leakage flow and loss is of great significance to improve the aerodynamic performance of the turbine.In this paper,the evolution mechanism of tip-leakage flow in a transonic high pressure turbine with a squealer tip is investigated with numerical simulation methods.The impacts of squealer geometric,such as the inclined pressure side rim and squealer rim width,on the vortex structure in the gap and tip-leakage loss are discussed.The results show that the scraping vortex inside the cavity plays the role of aero-labyrinth seal,and forms interlocking sealing labyrinth structure with the rims on both sides,which has an effective sealing effect on the tip-leakage flow.The inclined pressure side squealer rim inhibits the development of the pressure side squealer corner vortex,which is beneficial to expand the influence range of the scraping vortex and enhance the sealing effect on the tip-leakage flow.The increase of the suction side squealer rim width reduces the effective flow area at the gap exit,which is conducive to reduction of the tip-leakage flow rate and tip-leakage loss.However,the increase of the pressure side squealer rim width strengthens the pressure side squealer corner vortex and limits the development space of the scraping vortex,causing the adverse effects on the control of tip-leakage flow. 展开更多
关键词 TURBINE squealer tip tip-leakage flow squealer width tip-leakage loss
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部