期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
Mechanical behaviours of bedded sandstone under hydromechanical coupling
1
作者 Junwen Zhang Zhixiang Song +7 位作者 Lichao Zhang Shaokang Wu Shanyong Wang Yang Zhang Xukai Dong Jinxin Wang Yanbo Han Baohua Kan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1245-1261,共17页
The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of be... The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of bedded sandstones under identical osmotic pressure and various confining pressures were conducted.Then,the evolution curves of stress-strain,permeability and damage,macro-and mesoscopic failure characteristics were obtained.Subsequently,the mechanical behaviour was characterized,and finally the failure mechanism was revealed.The results showed that:(1)The failure of the sandstone with the bedding angle of 45°or 60°was the structure-dominant type,while that with the bedding angle of 0°,30°or 90°was the force-dominant type.(2)When the bedding angle was in the range of(0°,30°)or(45°,90°),the confining pressure played a dominant role in influencing the peak strength.However,withinβ∈(30°,45°),the bedding effect played a dominant role in the peak strength.(3)With the increase in bedding angle,the cohesion increased first,then decreased and finally increased,while the internal friction angle was the opposite.(4)When the bedding angle was 0°or 30°,the“water wedging”effect and the“bedding buckling”effect would lead to the forking or converging shear failure.When the bedding angle was 45°or 60°,the sliding friction effect would lead to the shear slipping failure.When the bedding angle was 90°,the combination of the“bedding buckling”effect and shear effect would lead to the mixed tension-shear failure.The above conclusions obtained are helpful for the prevention of water inrush disasters in water-rich roadways with different dips in coal mines. 展开更多
关键词 Hydromechanical coupling Bedded sandstones Mechanical behaviour Bedding effect Failure mechanism
下载PDF
Sustainable Development of Energy Systems and Climate Systems:Key Issues and Perspectives 被引量:1
2
作者 Bing Wang Lu Li Xinru Jiang 《Energy Engineering》 EI 2023年第8期1763-1773,共11页
Climate change and energy security issues are prominent challenges in current energy system management,which should be governed synergistically due to the feedback relationships between them.The“Energy Systems Manage... Climate change and energy security issues are prominent challenges in current energy system management,which should be governed synergistically due to the feedback relationships between them.The“Energy Systems Management and Climate Change”Special Collection Issue in the journal of Energy Engineering provide insights into the field of energy systems management and climate change.From an extended perspective,this study discusses the key issues,research methods and models for energy system management and climate change research.Comprehensive and accurate prediction of energy supply and demand,the evaluation on the energy system resilience to climate change and the coupling methodology application of both nature and social science field maybe the frontier topics around achieving sustainable development goals of energy systems. 展开更多
关键词 Energy system management climate change renewable energy FEEDBACKS
下载PDF
Ground fissure development regularity and formation mechanism of shallow buried coal seam mining with Karst landform in Jiaozi coal mine: a case study
3
作者 ZHU Heng-zhong 《Journal of Mountain Science》 SCIE CSCD 2023年第10期3101-3120,共20页
A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geogr... A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geographical distribution,dynamic development process,and failure mechanism of these ground fissures by employing field monitoring,numerical simulation,and theoretical analysis.The findings demonstrate that ground fissure development has an obvious feature of subregion,and its geographical distribution is significantly affected by topography.Tensile type,open type,and stepped type are three different categories of ground fissure.Ground fissures emerge dynamically as the panel advances,and they typically develop with a distance of less than periodic weighting step distance in advance of panel advancing position.Ground fissures present the dynamic development feature,temporary fissure has the ability of self-healing.The dynamic development process of ground fissure with closed-distance coal seam repeated mining is expounded,and the development scale is a dynamic development stage of“closure→expansion→stabilized”on the basis of the original development scale.From the perspective of topsoil deformation,the computation model considering two points movement vectors towards two directions of the gob and the ground surface is established,the development criterion considering the critical deformation value of topsoil is obtained.The mechanical model of hinged structure of inclined body is proposed to clarify the ground fissure development,and the interaction between slope activity and ground fissure development is expounded.These research results fulfill the gap of ground fissures about development regularity and formation mechanism,and can contribute to ground fissure prevention and treatment with Karst landform. 展开更多
关键词 Karst landform Shallow buried coal seam Development regularity Formation mechanism Ground fissure Repeated mining
下载PDF
Characterization and evaluation of brittleness of deep bedded sandstone from the perspective of the whole life-cycle evolution process 被引量:3
4
作者 Zhixiang Song Junwen Zhang +2 位作者 Yang Zhang Xukai Dong Shanyong Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第4期481-502,共22页
The quantitative determination and evaluation of rock brittleness are crucial for the estimation of excavation efficiency and the improvement of hydraulic fracturing efficiency.Therefore,a“three-stage”triaxial loadi... The quantitative determination and evaluation of rock brittleness are crucial for the estimation of excavation efficiency and the improvement of hydraulic fracturing efficiency.Therefore,a“three-stage”triaxial loading and unloading stress path is designed and proposed.Subsequently,six brittleness indices are selected.In addition,the evolution characteristics of the six brittleness indices selected are characterized based on the bedding effect and the effect of confining pressure.Then,the entropy weight method(EWM)is introduced to assign weight to the six brittleness indices,and the comprehensive brittleness index Bcis defined and evaluated.Next,the new brittleness classification standard is determined,and the brittleness differences between the two stress paths are quantified.Finally,compared with the previous evaluation methods,the rationality of the proposed comprehensive brittleness index Bcis also verified.These results indicate that the proposed brittleness index Bccan reflect the brittle characteristics of deep bedded sandstone from the perspective of the whole life-cycle evolution process.Accordingly,the method proposed seems to offer reliable evaluations of the brittleness of deep bedded sandstone in deep engineering practices,although further validation is necessary. 展开更多
关键词 BRITTLENESS Deep bedded sandstone Whole life-cycle evolution process Bedding effect Effect of confining pressure Entropy weight method
下载PDF
In-situ observation and modeling approach to evolution of pore-fracture structure in coal 被引量:1
5
作者 Hongwei Zhou Zelin Liu +3 位作者 Jiawei Zhao Bocen Chen Xiangnan Li Jiangcheng Zhong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期265-274,共10页
The characterisation of the pore-fracture structure(PFS)and its evolution in coal during mining are essential for preventing gas outbursts and improving gas extraction efficiency.In this study,the evolution of the PFS... The characterisation of the pore-fracture structure(PFS)and its evolution in coal during mining are essential for preventing gas outbursts and improving gas extraction efficiency.In this study,the evolution of the PFS in coal samples under the condition of mining stress was directly captured in situ by combination of the mechanical testing system with high-precision visualisation nuclear magnetic resonance equipment.A fractional derivative model was established to describe the relationship between stress and porosity based on experimental results of the PFS under different stress states.The results showed that with an increase in the deviatoric stress,the adsorption pore content increases rapidly initially and then increases slowly or remains unchanged;the seepage pore and fracture(SPF)content decreases initially and then increases.The SPF compressibility coefficient decreases with an increase in the deviatoric stress.The fractional derivative model can accurately describe the stress sensitivity of the SPFs at the pre-peak stage,thus providing a new approach for accurately characterising the seepage characteristics of coal reservoirs. 展开更多
关键词 Pore-fracture structure Fractional derivative Stress sensitivity COMPRESSIBILITY Nuclear magnetic resonance imaging
下载PDF
Response characteristics of gas pressure under simultaneous static and dynamic load:Implication for coal and gas outburst mechanism 被引量:1
6
作者 Longyong Shu Liang Yuan +3 位作者 Qixian Li Wentao Xue Nannan Zhu Zhengshuai Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期155-171,共17页
Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the... Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the key factors that induce coal and gas outbursts.In this study,first,the coupling relationship between the gas pressure in the coal body ahead of the working face and the dynamic load was investigated using experimental observations,numerical simulations,and mine-site investigations.It was observed that the impact rate of the dynamic load on the gas-bearing coal can significantly change the gas pressure.The faster the impact rate,the speedier the increase in gas pressure.Moreover,the gas pressure rise was faster closer to the impact interface.Subsequently,based on engineering background,we proposed three models of stress and gas pressure distribution in the coal body ahead of the working face:static load,stress disturbance,and dynamic load conditions.Finally,the gas pressure distribution and outburst mechanism were investigated.The high concentration of gas pressure appearing at the coal body ahead of the working face was caused by the dynamic load.The gas pressure first increased gradually to a peak value and then decreased with increasing distance from the working face.The increase in gas pressure plays a major role in outburst initiation by resulting in the ability to more easily reach the critical points needed for outburst initiation.Moreover,the stronger the dynamic load,the greater the outburst initiation risk.The results of this study provide practical guidance for the early warning and prevention of coal and gas outbursts. 展开更多
关键词 Coal and gas outburst Gas pressure Dynamic load Outburst mechanism
下载PDF
Fluidized mining and in-situ transformation of deep underground coal resources: a novel approach to ensuring safe, environmentally friendly, low-carbon, and clean utilisation 被引量:8
7
作者 Yang Ju Yan Zhu +4 位作者 Heping Xie Xiaodong Nie Yong Zhang Chang Lu Feng Gao 《International Journal of Coal Science & Technology》 EI 2019年第2期184-196,共13页
Traditional coal mining and utilisation patterns are severely detrimental to natural resources and environments and significantly impede safe, low-carbon, clean, and sustainable utilisation of coal resources. Based on... Traditional coal mining and utilisation patterns are severely detrimental to natural resources and environments and significantly impede safe, low-carbon, clean, and sustainable utilisation of coal resources. Based on the idea of in situ fluidized coal mining that aims to transform solid coal into liquid or gas and transports the fluidized resources to the ground to ensure safe mining and low-carbon and clean utilisation, in this study, we report on a novel in situ unmanned automatic mining method. This includes a flexible, earthworm-like unmanned automatic mining machine (UAMM) and a coal mine layout for in situ fluidized coal mining suitable for the UAMM. The technological and economic advantages and the carbon emission reduction of the UAMM-based in situ fluidized mining in contrast to traditional mining technologies are evaluated as well. The development trends and possible challenges to this design are also discussed. It is estimated that the proposed method costs approximately 49% of traditional coal mining costs. The UAMM-based in situ fluidized mining and transformation method will reduce CO2 emissions by at least 94.9% compared to traditional coal mining and utilisation methods. The proposed approach is expected to achieve safe and environmentally friendly coal mining as well as lowcarbon and clean utilisation of coal. 展开更多
关键词 IN-SITU fluidized MINING Unmanned automatic MINING machine MINE layout Coal resources Low-carbon Environmental protection
下载PDF
Single-factor analysis and interaction terms on the mechanical and microscopic properties of cemented aeolian sand backfill
8
作者 Shushuai Wang Renshu Yang +2 位作者 Yongliang Li Bin Xu Bin Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1584-1595,共12页
The use of aeolian sand(AS)as an aggregate to prepare coal mine cemented filling materials can resolve the problems of gangue shortage and excessive AS deposits.Owing to the lack of research on the mechanism of cement... The use of aeolian sand(AS)as an aggregate to prepare coal mine cemented filling materials can resolve the problems of gangue shortage and excessive AS deposits.Owing to the lack of research on the mechanism of cemented AS backfill(CASB),the response surface method(RSM)was adopted in this study to analyze the influence of ordinary Portland cement(PO)content(x_(1)),fly ash(FA)-AS(FA-AS)ratio(x_(2)),and concentration(x_(3))on the mechanical and microscopic properties of the CASB.The hydration characteristics and internal pore structure of the backfill were assessed through thermogravimetric/derivative thermogravimetric analysis,mercury intrusion porosimetry,and scanning electron microscopy.The RSM results show that the influence of each factor and interaction term on the response values is extremely significant(except x_(1)x_(3),which had no obvious effect on the 28 d strength).The uniaxial compressive strength(UCS)increased with the PO content,FA-AS ratio,and concentration.The interaction effects of x_(1)x_(2),x_(1)x_(3),and x_(2)x_(3) on the UCS at 3,7,and 28 d were analyzed.In terms of the influence of interaction items,an improvement in one factor promoted the strengthening effect of another factor.The enhancement mechanism of the curing time,PO content,and FA-AS ratio on the backfill was reflected in the increase in hydration products and pore structure optimization.By contrast,the enhancement mechanism of the concentration was mainly the pore structure optimization.The UCS was positively correlated with weight loss and micropore content but negatively correlated with the total porosity.The R^(2) value of the fitting function of the strength and weight loss,micropore content,and total porosity exceeded 0.9,which improved the characterization of the enhancement mechanism of the UCS based on the thermogravimetric analysis and pore structure.This work obtained that the influence rules and mechanisms of the PO,FA-AS,concentration,and interaction terms on the mechanical properties of the CASB provided a certain theoretical and engineering guidance for CASB filling. 展开更多
关键词 cemented aeolian sand backfill response surface method mechanical properties microscopic properties influence mechanism
下载PDF
Numerical analysis on mechanical difference of sandstone under in-situ stress,pore pressure preserved environment at depth
9
作者 Hongwei Zhou Mingyuan Lu +5 位作者 Heping Xie Wenhao Jia Ruidong Peng Yimeng Wang Bocen Chen Pengfei Jing 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第11期1339-1350,共12页
Deep in-situ rock mechanics considers the influence of the in-situ environment on mechanical properties,differentiating it from traditional rock mechanics.To investigate the effect of in-situ stress,pore pressure pres... Deep in-situ rock mechanics considers the influence of the in-situ environment on mechanical properties,differentiating it from traditional rock mechanics.To investigate the effect of in-situ stress,pore pressure preserved environment on the mechanical difference of sandstone,four tests are numerically modeled by COMSOL:conventional triaxial test,conventional pore pressure test,in-situ stress restoration and reconstruction test,and in-situ pore pressure-preserved test(not yet realized in the laboratory).The in-situ stress restoration parameter is introduced to characterize the recovery effect of in-situ stress on elastic modulus and heterogeneous distribution of sandstone at different depths.A random function and nonuniform pore pressure coefficient are employed to describe the non-uniform distribution of pore pressure in the in-situ environment.Numerical results are compared with existing experimental data to validate the models and calibrate the numerical parameters.By extracting mechanical parameters from numerical cores,the stress-strain curves of the four tests under different depths,in-situ stress and pore pressure are compared.The influence of non-uniform pore pressure coefficient and depth on the peak strength of sandstone is analyzed.The results show a strong linear relationship between the in-situ stress restoration parameter and depth,effectively characterizing the enhanced effect of stress restoration and reconstruction methods on the elastic modulus of conventional cores at different depths.The in-situ pore pressurepreserved test exhibits lower peak stress and peak strain compared to the other three tests,and sandstone subjected to non-uniform pore pressure is more prone to plastic damage and failure.Moreover,the influence of non-uniform pore pressure on peak strength gradually diminished with increasing depth. 展开更多
关键词 In-situ pore pressure-preserved ENVIRONMENT Numerical simulation approach Deep in-situ rock mechanics In-situ stress restoration and reconstruction
下载PDF
Formation mechanism and height calculation of the caved zone and water-conducting fracture zone in solid backfill mining 被引量:3
10
作者 Lei Li Fengming Li +2 位作者 Yong Zhang Daming Yang Xue Liu 《International Journal of Coal Science & Technology》 EI 2020年第1期208-215,共8页
To study the heights of the caved zone and water-conducting fracture zone in backfill mining,the failure mechanism of strata during backfill mining was analyzed,and a method for determining the heights of the two zone... To study the heights of the caved zone and water-conducting fracture zone in backfill mining,the failure mechanism of strata during backfill mining was analyzed,and a method for determining the heights of the two zones was proposed based on key strata theory.The movement and failure regularity of the strata above the backfilling panel were revealed through numerical simulation.Considering the geologic conditions of the CT101 backfilling panel,the height of the fracture zone was determined using the proposed method along with empirical calculation,numerical simulation,and borehole detection.The results of the new calculation method were similar to in situ measurements.The traditional empirical formula,which is based on the equivalent mining height model,resulted in large errors during calculation.The findings indicate the reliability of the new method and demonstrate its significance for creating reference data for related studies. 展开更多
关键词 Backfill mining Strata failure Key strata Heights of caved and fracture zones
下载PDF
Pore-pressure and stress-coupled creep behavior in deep coal:Insights from real-time NMR analysis
11
作者 Wenhao Jia Hongwei Zhou +3 位作者 Senlin Xie Yimeng Wang Xinfeng Hu Lei Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期77-90,共14页
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi... Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal. 展开更多
关键词 Real-time monitoring Pore pressure-stress coupling Microscopic pore-fracture structure Variable-order fractional creep model Deep coal
下载PDF
Experimental study on the mechanical properties and consolidation mechanism of microbial grouted backfill 被引量:7
12
作者 Xuejie Deng Yu Li +5 位作者 Fei Wang Xiaoming Shi Yinchao Yang Xichen Xu Yanli Huang Benjamin de Wit 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期271-282,共12页
Backfill mining technology is the practice of returning waste materials underground for both disposal and geotechnical stability,however,a challenge with current technologies is that they commonly require cement-based... Backfill mining technology is the practice of returning waste materials underground for both disposal and geotechnical stability,however,a challenge with current technologies is that they commonly require cement-based binders which have a relatively high environmental impact.Finding alternatives to cement-based binders can improve environmental performance and this paper proposes microbial grouted backfill(MGB)as a potential solution.In this paper,the effects of the cementation solution concentration(CSC),volume ratio of bacterial solution to cementation solution(VRBC),particle sizes of the aggregates,and the number of grouting batches on the mechanical properties of MGB are studied.The experimental results show that MGB strength increased,up to a peak value,as CSC was increased,before decreasing as CSC was increased further.The results also show that MGB strength increased,up to a peak value,as VRBC decreased,before decreasing as the VRBC was decreased further.The peak strength was achieved at a CSC of 2 mol/L and a VRBC of 1:9.The strength of the MGB also increased as the number of grouting batches increased.Graded MGB samples showed the highest UCS,25.12 MPa,at particle sizes of 0.2 to 0.8 mm,while full(non-graded)MGB samples displayed mean UCS values ranging from1.56 MPa when the maximum particle size was 0.2 mm,up to 13 MPa when the maximum particle size was 1.2 mm.MGB samples are consolidated by the calcium carbonate that is precipitated during microbial metabolism,and the strength of MGB increases linearly as calcium carbonate content increases.The calcium carbonate minerals produced in MGB materials are primarily calcite,with secondary amounts of vaterite. 展开更多
关键词 Microbial grouted backfill Mechanical properties Consolidation mechanism Microbial induced carbonate precipitation Grouting Backfill mining
下载PDF
Dynamic tensile behaviour and crack propagation of coal under coupled static-dynamic loading 被引量:9
13
作者 Xianjie Hao Weisheng Du +4 位作者 Yixin Zhao Zhuowen Sun Qian Zhang Shaohua Wang Haiqing Qiao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第5期659-668,共10页
The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading test... The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading tests are conducted on Brazilian disc(BD)coal specimens using a modified split Hopkinson pressure bar(SHPB).The effects of the static axial pre-stress and loading rate on the dynamic tensile strength and crack propagation characteristics of BD coal specimens are studied.The average dynamic indirect tensile strength of coal specimens increases first and then decreases with the static axial pre-stress increasing.When no static axial pre-stress is applied,or the static axial pre-stress is 30%of the static tensile strength,the dynamic indirect tensile strength of coal specimens shows an increase trend as the loading rate increases.When the static axial pre-stress is 60%of the static tensile strength,the dynamic indirect tensile strength shows a fluctuant trend as the loading rate increases.According to the crack propagation process of coal specimens recorded by high-speed camera,the impact velocity influences the mode of crack propagation,while the static axial pre-stress influences the direction of crack propagation.The failure of coal specimens is a coupled tensile-shear failure under high impact velocity.When there is no static axial pre-stress,tensile cracks occur in the vertical loading direction.When the static axial pre-stress is applied,the number of cracks perpendicular to the loading direction decreases,and more cracks occur in the parallel loading direction. 展开更多
关键词 COAL Coupled static-dynamic loading SHPB Dynamic fracture behaviour Crack propagation
下载PDF
Measurement of overburden failure zones in close-multiple coal seams mining 被引量:5
14
作者 Yang Li Yuqi Ren +3 位作者 Syd S.Peng Haozhou Cheng Nan Wang Junbo Luo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第1期43-50,共8页
In the Kaiping Coal field,mining of five coal seams,located within 80 m in the Kailuan Group,#5,#7,#8,#9 and#12 coal seam,is difficult due to small interburden thickness,concentrated stress distributions,high coal sea... In the Kaiping Coal field,mining of five coal seams,located within 80 m in the Kailuan Group,#5,#7,#8,#9 and#12 coal seam,is difficult due to small interburden thickness,concentrated stress distributions,high coal seam metamorphism,and complex geological conditions.By using the ZTR12 geological penetration radar(GPR)survey combined with borehole observations,the overburden caving due to mining of the five coals seams was measured.The development characteristics of full-cover rock fractures after mining were obtained from the GPR scan,which provides a measurement basis for the control of rock strata in close multiple coal seam mining.For the first time,it was found that the overburden caving pattern shows a periodic triangular caved characteristic.Furthermore,it is proposed that an upright triangular collapsed pile masonry and an inverted triangular with larger fragments piled up alternately appear in the lower gob.The research results show that the roof structure formed in the gob area can support the key overlying strata,which is beneficial to ensure the integrity and stability of the upper coal seams in multiple-seam mining of close coal seams. 展开更多
关键词 Overburden measurement GPR survey Close multiple coal seam Secondary roof break Periodic triangular cave Overburden caving
下载PDF
Theoretical description of drawing body shape in an inclined seam with longwall top coal caving mining 被引量:6
15
作者 Jiachen Wang Weijie Wei Jinwang Zhang 《International Journal of Coal Science & Technology》 EI 2020年第1期182-195,共14页
Understanding the characteristics of drawing body shape is essential for optimization of drawing parameters in longwall top coal caving mining.In this study,both physical experiments and theoretical analysis are emplo... Understanding the characteristics of drawing body shape is essential for optimization of drawing parameters in longwall top coal caving mining.In this study,both physical experiments and theoretical analysis are employed to investigate these characteristics and derive a theoretical equation for the drawing body shape along the working face in an inclined seam.By analyzing the initial positions of drawn marked particles,the characteristics of the drawing body shape for different seam dip angles are obtained.It is shown that the drawing body of the top coal exhibits a shape-difference and volume-symmetry characteristic,on taking a vertical line through the center of support opening as the axis of symmetry,the shapes of the drawing body on the two sides of this axis are clearly different,but their volumes are equal.By establishing theoretical models of the drawing body in the initial drawing stage and the normal drawing stage,a theoretical equation for the drawing body in an inclined seam is proposed,which can accurately describe the characteristics of the drawing body shape.The shape characteristics and volume symmetry of the drawing body are further analyzed by comparing the results of theoretical calculations and numerical simulations.It is shown that one side of the drawing body is divided into two parts by an inflection point,with the lower part being a variation development area.This variation development area increases gradually with increasing seam dip angle,resulting in an asymmetry of the drawing body shape.However,the volume symmetry coefficient fluctuates around 1 for all values of the seam dip angle variation,and the volumes of the drawing body on the two sides are more or less equal as the variation development volume is more or less equal to the cut volume.Both theoretical calculations and numerical simulations confirm that the drawing body of the top coal exhibits the shape-difference and volume-symmetry characteristic. 展开更多
关键词 Longwall top coal caving mining Inclined seam Top coal Drawing body shape Equation for drawing body
下载PDF
Experimental and numerical study of coal-rock bimaterial composite bodies under triaxial compression 被引量:3
16
作者 Yulong Chen Jianping Zuo +2 位作者 Dejun Liu Yingjie Li Zhenbo Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第5期908-924,共17页
To accurately predict coal burst hazards and estimate the failure of coal pillars in underground coal mining systems,it is of great significance to understand the mechanical behavior of coal-rock bimaterial composite ... To accurately predict coal burst hazards and estimate the failure of coal pillars in underground coal mining systems,it is of great significance to understand the mechanical behavior of coal-rock bimaterial composite structures.This paper presents experimental and numerical investigations on the response of rock-coal,coal-rock,and rock-coal-rock bimaterial composite structures under triaxial compression.The triaxial compression experiments are conducted under confining pressures in the range of 0-20 MPa.The resulting inside fracture networks are detected using X-ray-based computed tomography(CT).The experimentally observed data indicate that the mechanical parameters of the rock-coalrock composites are superior to those of the rock-coal and coal-rock combinations.After compression failure,the coal-rock combination specimens are analyzed via X-ray CT.The results display that the failure of the coal-rock composite bodies primarily takes place within the coal.Further,the bursting proneness is reduced by increasing confining pressure.Subsequently,the corresponding numerical simulations of the experiments are carried out by using the particle flow code.The numerical results reveal that coal is vulnerable with regard to energy storage and accumulation. 展开更多
关键词 Coal-rock bimaterial composite body Triaxial compression Strength and deformation X-ray CT Numerical simulation Energy
下载PDF
Parameter inversion and location determination of evolutionary weak layer for open-pit mine slope 被引量:3
17
作者 Zhao Hongze Wang Dongyu +1 位作者 Ma Ming Zheng Kaihui 《International Journal of Coal Science & Technology》 EI CAS 2020年第4期714-724,共11页
In light of the complex and dynamic mechanical properties of evolving weak strata in open-pit mines,and the consequent difficulty of determining their mechanical parameters,this study uses the ultimate balance theory,... In light of the complex and dynamic mechanical properties of evolving weak strata in open-pit mines,and the consequent difficulty of determining their mechanical parameters,this study uses the ultimate balance theory,along with the back analysis method combined with monitoring data on field displacement,to carry out parameter inversion using the FLAC3D numerical simulation software.The edge slope of a working pit of the Weijiamao open-pit mine was used as research object to this end.As the results obtained by the constitutive model were consistent with the field monitoring data,the evolving weak strata in the slope and the position of the landslide in the mine could be obtained.The landslide was directed northeast.The mechanism of the edge slope of the working pit was identified as unloading shear failure,and the feasibility of the method of parameter inversion was verified.The internal friction angle φand cohesion C of evolving weak strata in the slope of the open-pit mine were also obtained,where this compensated for the deficiency of laboratory tests and enabled the transformation from qualitative to quantitative analysis.This can provide a reliable basis for the safe operation of open-pit mines. 展开更多
关键词 Open-pit mine Evolution of weak layer Inverse analysis Monitoring data Numerical simulation
下载PDF
Study on the relation between damage and permeability of sandstone at depth under cyclic loading 被引量:3
18
作者 Yang Zhao Hongwei Zhou +1 位作者 Jiangcheng Zhong Di Liu 《International Journal of Coal Science & Technology》 EI 2019年第4期479-492,共14页
The damage and permeability evolution of rock under stress is of great significance to engineering safety.In this paper,the evolution law of rock damage and permeability is studied by means of acoustic emission (AE) s... The damage and permeability evolution of rock under stress is of great significance to engineering safety.In this paper,the evolution law of rock damage and permeability is studied by means of acoustic emission (AE) seepage experiment on deep roof sandstone with cyclic loading.Characterization of damage uses the changes in acoustic emission fractal characteristics and compression parameter which based on elastic modulus.The experimental results show that the AE events has fractal characteristic,in which the AE b-value and correlation dimension can represent the damage of rock.When the fractal characteristic value of AE increases,it indicates that the rock is in the compaction stage and the damage is not obvious.When the fractal characteristic value of AE drops,it indicates that the rock was damaged,and the permeabilityincrease.Under the cyclic load increasing step by step,the elastic modulus first increases and then decrease.Introducing compression parameter C to characterize the state of compaction and damage,it is obtained that the rock damage state and hydrostatic permeability show a power law function relationship with porosity and have the same monotonicity.When compression parameter is less than zero,the evolution law of permeability and damage can be described by functional relationship between hydrostatic permeability K and compression parameter C. 展开更多
关键词 Deep ROOF SANDSTONE CYCLIC loading Acoustic emission PERMEABILITY
下载PDF
Reasonable location of stopping line in close‑distance underlying coal seam and partition support of large cross‑section roadway 被引量:1
19
作者 Dongdong Chen Yiyi Wu +3 位作者 Shengrong Xie Fangfang Guo Fulian He Ruipeng Liu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第4期181-202,共22页
Close-distance coal seams are widely distributed over China,and the coal pillars left by the overlying coal seams afect the retracement channel of the underlying coal seam in the stopping stage.Based on the engineerin... Close-distance coal seams are widely distributed over China,and the coal pillars left by the overlying coal seams afect the retracement channel of the underlying coal seam in the stopping stage.Based on the engineering background of close-distance seam mining in a coal mine,the reasonable position of the underlying coal seam's stopping line and the support method of the large section roadway during stopping are investigated using feld measurements,similar simulation experiments,and numerical simulations.There are three types of location relationships between the stopping line of the underlying coal seam and the stopping line of the overlying coal seam:"externally staggered with the upper stopping line"(ESUL,stops mining under the overlying goaf),"overlapped with upper stopping line"(OUL),and"internally staggered with the upper stopping line"(ISUL,ISUL-SD for shorter internal staggered distances,ISUL-LD for longer ones).There are diferent stress arch structures in the overlying strata of the above three positions,and the stress arch evolution process exists in the process of ESUL→OUL→ISUL-SD→ISUL-LD:a front and rear double stress arch structure→the front arch gradually decreases→the front arch dies out,and the double arch synthesizes the single arch→the single-arch range expands→the nested double arch.The relationship between the stress arch structure and the position of the stopping line is evaluated as follows:(1)ESUL:the stress concentration in the roof plate of the retracement channel of the underlying coal seam is the highest,because the overburden block of the extensive collapse zone acts directly on the roof plate of the retracement channel,resulting in relative difculties in roof support.(2)OUL:although the retracement channel roof pressure is minimal,the overlying rock structure has the potential for rotation or slippage instability.(3)ISUL-SD:the pressure on the roof of the retracement channel is small and the overburden structure is stable,which is conducive to the safe retraction of the support and not limited by the width of the end-mining coal pillar.(4)ISUL-LD:it is basically the same as the condition of stopping under the non-goaf;however,it has a limitation on the width of the end-mining coal pillar.The location of the stopping line is selected as ISUL-SD,and the retraction process of the self-excavating retraction channel was adopted.A partition asymmetric support scheme which is proven by feld practice is proposed,through a comprehensive analysis of the pre-stress feld simulation of the support scheme,based on the diferent control requirements of the roof above the support and the roof of the retracement channel in the stopping area.This method realizes safe and smooth withdrawal of the support. 展开更多
关键词 Close-distance coal seams Stopping line Stress arch structure Retracement channel Partition support
下载PDF
Failure analysis and control technology of intersections of large‑scale variable cross‑section roadways in deep soft rock 被引量:1
20
作者 Shengrong Xie Yiyi Wu +3 位作者 Dongdong Chen Ruipeng Liu Xintao Han Qiucheng Ye 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第2期124-146,共23页
In deep underground mining,achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge.Owing to the coupli... In deep underground mining,achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge.Owing to the coupling action of multiple factors such as deep high stress,adjacent faults,cross-layer design,weak lithology,broken surrounding rock,variable cross-sections,wide sections up to 9.9 m,and clusters of nearby chambers,there was severe deformation and breakdown in the No.10 intersection of the roadway of large-scale variable cross-section at the−760 m level in a coal mine.As there are insufcient examples in engineering methods pertaining to the geological environment described above,the numerical calculation model was oversimplifed and support theory underdeveloped;therefore,it is imperative to develop an efective support system for the stability and sustenance of deep roadways.In this study,a quantitative analysis of the geological environment of the roadway through feld observations,borehole-scoping,and ground stress testing is carried out to establish the FLAC 3D variable cross-section crossing roadway model.This model is combined with the strain softening constitutive(surrounding rock)and Mohr–Coulomb constitutive(other deep rock formations)models to construct a compression arch mechanical model for deep soft rock,based on the quadratic parabolic Mohr criterion.An integrated control technology of bolting and grouting that is mainly composed of a high-strength hollow grouting cable bolt equipped with modifed cement grouting materials and a high-elongation cable bolt is developed by analyzing the strengthening properties of the surrounding rock before and after bolting,based on the Heok-Brown criterion.As a result of on-site practice,the following conclusions are drawn:(1)The plastic zone of the roof of the cross roadway is approximately 6 m deep in this environment,the tectonic stress is nearly 30 MPa,and the surrounding rock is severely fractured.(2)The deformation of the roadway progressively increases from small to large cross-sections,almost doubling at the largest cross-section.The plastic zone is concentrated at the top plate and shoulder and decreases progressively from the two sides to the bottom corner.The range of stress concentration at the sides of the intersection roadway close to the passageway is wider and higher.(3)The 7 m-thick reinforced compression arch constructed under the strengthening support scheme has a bearing capacity enhanced by 1.8 to 2.3 times and increase in thickness of the bearing structure by 1.76 times as compared to the original scheme.(4)The increase in the mechanical parameters c andφof the surrounding rock after anchoring causes a signifcant increase inσt;the pulling force of the cable bolt beneath the new grouting material is more than twice that of ordinary cement grout,and according to the test,the supporting stress feld shows that the 7.24 m surrounding rock is compacted and strengthened in addition to providing a strong foundation for the bolt(cable).On-site monitoring shows that the 60-days convergence is less than 30 mm,indicating that the stability control of the roadway is successful. 展开更多
关键词 Deep soft rock Variable cross-section Roadway intersection Bolting-grouting integration New grouting material
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部