Single-phase Y_(4)Al_(2)O_(9)(YAM)powders were synthesized via solid-state reaction starting from nano-sized Al_(2)O_(3) and Y_(2)O_(3).Fully dense(99.5%)bulk YAM ceramics were consolidated by spark plasma sintering(S...Single-phase Y_(4)Al_(2)O_(9)(YAM)powders were synthesized via solid-state reaction starting from nano-sized Al_(2)O_(3) and Y_(2)O_(3).Fully dense(99.5%)bulk YAM ceramics were consolidated by spark plasma sintering(SPS)at 1800℃.We demonstrated the excellent damage tolerance and good machinability of YAM ceramics.Such properties are attributed to the easy slipping along the weakly bonded crystallographic planes,resulting in multiple energy dissipation mechanisms such as transgranular fracture,shear slipping and localized grain crushing.展开更多
Hydrogel wound dressings can play critical roles in wound healing protecting the wound from trauma or contamination and providing an ideal environment to support the growth of endogenous cells and promote wound closur...Hydrogel wound dressings can play critical roles in wound healing protecting the wound from trauma or contamination and providing an ideal environment to support the growth of endogenous cells and promote wound closure.This work presents a self-assembling hydrogel dressing that can assist the wound repair process mimicking the hierarchical structure of skin extracellular matrix.To this aim,the co-assembly behaviour of a carboxylated variant of xyloglucan(CXG)with a peptide amphiphile(PA-H3)has been investigated to generate hierarchical constructs with tuneable molecular composition,structure,and properties.Transmission electron microscopy and circular dichroism at a low concentration shows that CXG and PA-H3 co-assemble into nanofibres by hydrophobic and electrostatic interactions and further aggregate into nanofibre bundles and networks.At a higher concentration,CXG and PA-H3 yield hydrogels that have been characterized for their morphology by scanning electron microscopy and for the mechanical properties by smallamplitude oscillatory shear rheological measurements and compression tests at different CXG/PAH3 ratios.A preliminary biological evaluation has been carried out both in vitro with HaCat cells and in vivo in a mouse model.展开更多
基金The present work was supported by“Chunlei Program”in Ningbo,“Hundred Talents Program”of the Chinese Academy of Sciences(No.KJCX2-EW-H06)National Natural Science Foundation of China(No.51172248/E020301)National Natural Science Foundation of China(Nos.50772072 and 51072129).
文摘Single-phase Y_(4)Al_(2)O_(9)(YAM)powders were synthesized via solid-state reaction starting from nano-sized Al_(2)O_(3) and Y_(2)O_(3).Fully dense(99.5%)bulk YAM ceramics were consolidated by spark plasma sintering(SPS)at 1800℃.We demonstrated the excellent damage tolerance and good machinability of YAM ceramics.Such properties are attributed to the easy slipping along the weakly bonded crystallographic planes,resulting in multiple energy dissipation mechanisms such as transgranular fracture,shear slipping and localized grain crushing.
基金support of the ERC Starting Grant(STROFUNSCAFF)the UK Regenerative Medicine Platform(UKRMP2)Acellular/Smart Materials.C.D.acknowledges the support of University of Palermo FFR 2018/2021.
文摘Hydrogel wound dressings can play critical roles in wound healing protecting the wound from trauma or contamination and providing an ideal environment to support the growth of endogenous cells and promote wound closure.This work presents a self-assembling hydrogel dressing that can assist the wound repair process mimicking the hierarchical structure of skin extracellular matrix.To this aim,the co-assembly behaviour of a carboxylated variant of xyloglucan(CXG)with a peptide amphiphile(PA-H3)has been investigated to generate hierarchical constructs with tuneable molecular composition,structure,and properties.Transmission electron microscopy and circular dichroism at a low concentration shows that CXG and PA-H3 co-assemble into nanofibres by hydrophobic and electrostatic interactions and further aggregate into nanofibre bundles and networks.At a higher concentration,CXG and PA-H3 yield hydrogels that have been characterized for their morphology by scanning electron microscopy and for the mechanical properties by smallamplitude oscillatory shear rheological measurements and compression tests at different CXG/PAH3 ratios.A preliminary biological evaluation has been carried out both in vitro with HaCat cells and in vivo in a mouse model.