Single-phase Y_(4)Al_(2)O_(9)(YAM)powders were synthesized via solid-state reaction starting from nano-sized Al_(2)O_(3) and Y_(2)O_(3).Fully dense(99.5%)bulk YAM ceramics were consolidated by spark plasma sintering(S...Single-phase Y_(4)Al_(2)O_(9)(YAM)powders were synthesized via solid-state reaction starting from nano-sized Al_(2)O_(3) and Y_(2)O_(3).Fully dense(99.5%)bulk YAM ceramics were consolidated by spark plasma sintering(SPS)at 1800℃.We demonstrated the excellent damage tolerance and good machinability of YAM ceramics.Such properties are attributed to the easy slipping along the weakly bonded crystallographic planes,resulting in multiple energy dissipation mechanisms such as transgranular fracture,shear slipping and localized grain crushing.展开更多
基金The present work was supported by“Chunlei Program”in Ningbo,“Hundred Talents Program”of the Chinese Academy of Sciences(No.KJCX2-EW-H06)National Natural Science Foundation of China(No.51172248/E020301)National Natural Science Foundation of China(Nos.50772072 and 51072129).
文摘Single-phase Y_(4)Al_(2)O_(9)(YAM)powders were synthesized via solid-state reaction starting from nano-sized Al_(2)O_(3) and Y_(2)O_(3).Fully dense(99.5%)bulk YAM ceramics were consolidated by spark plasma sintering(SPS)at 1800℃.We demonstrated the excellent damage tolerance and good machinability of YAM ceramics.Such properties are attributed to the easy slipping along the weakly bonded crystallographic planes,resulting in multiple energy dissipation mechanisms such as transgranular fracture,shear slipping and localized grain crushing.