期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Water and heat transport in hilly red soil of southern China:I. Experiment and analysis 被引量:4
1
作者 吕军 黄志珍 韩晓非 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第5期331-337,共7页
Studies on coupled transfer of soil moisture and heat have been widely carried out for decades. However, little work has been done on red soils, widespread in southern China. The simultaneous transfer of soil moisture... Studies on coupled transfer of soil moisture and heat have been widely carried out for decades. However, little work has been done on red soils, widespread in southern China. The simultaneous transfer of soil moisture and heat depends on soil physical properties and the climate conditions. Red soil is heavy clay and high content of free iron and aluminum oxide. The climate conditions are characterized by the clear four seasons and the serious seasonal drought. The great annual and diurnal air temperature differences result in significant fluctuation in soil temperature in top layer. The closed and evaporating columns experiments with red soil were conducted to simulate the coupled transfer of soil water and heat under the overlaying and opening fields’ conditions, and to analyze the effects of soil temperature gradient on the water transfer and the effects of initial soil water contents on the transfer of soil water and heat. The closed and evaporating columns were designed similarly with about 18 °C temperatures differences between the top and bottom boundary, except of the upper end closed or exposed to the air, respectively. Results showed that in the closed column, water moved towards the cold end driven by temperature gradient, while the transported water decreased with the increasing initial soil water content until the initial soil water content reached to field capacity equivalent, when almost no changes for the soil moisture profile. In the evaporating column, the net transport of soil water was simultaneously driven by evaporation and temperature gradients, and the drier soil was more influenced by temperature gradient than by evapo- ration. In drier soil, it took a longer time for the temperature to reach equilibrium, because of more net amount of transported water. 展开更多
关键词 Red soil Coupled transfer of water and heat EVAPORATION Initial soil moisture
下载PDF
Water and heat transport in hilly red soil of southern China:II. Modeling and simulation 被引量:2
2
作者 吕军 黄志珍 韩晓非 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第5期338-345,共8页
Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China. Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Vi... Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China. Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Visual Basic 6.0, was developed to predict the coupled transfer of water and heat in hilly red soil. A series of soil column experiments for soil water and heat transfer, including soil columns with closed and evaporating top ends, were used to test the simulation model. Results showed that in the closed columns, the temporal and spatial distribution of moisture and heat could be very well predicted by the model, while in the evaporating columns, the simulated soil water contents were somewhat different from the observed ones. In the heat flow equation by Taylor and Lary (1964), the effect of soil water evaporation on the heat flow is not involved, which may be the main reason for the differences between simulated and observed results. The predicted temperatures were not in agreement with the observed one with thermal conductivities calculated by de Vries and Wierenga equations, so that it is suggested that Kh, soil heat conductivity, be multiplied by 8.0 for the first 6.5 h and by 1.2 later on. Sensitivity analysis of soil water and heat coefficients showed that the saturated hydraulic conductivity, KS, and the water diffusivity, D(θ), had great effects on soil water transport; the variation of soil porosity led to the difference of soil thermal properties, and accordingly changed temperature redistribution, which would affect water redistribution. 展开更多
关键词 Red soil Coupled transfer of soil water and heat Simulation model VALIDATION Sensitivity analysis
下载PDF
Heavy-Metal Tolerance and Antibiotic Susceptibility of Red Pigmented Bacteria Isolated from Marine Environment 被引量:1
3
作者 Mahtab Jafarzade Suhaiza Mohamad +1 位作者 Gires Usup Asmat Ahmad 《Natural Resources》 2012年第4期171-174,共4页
This study was undertaken to determine heavy metal resistance and antibiotic susceptibility of three non-pathogenic red pigmented bacteria namely WPRA3, SM11-3j and SC-G18, isolated from marine environments of Malaysi... This study was undertaken to determine heavy metal resistance and antibiotic susceptibility of three non-pathogenic red pigmented bacteria namely WPRA3, SM11-3j and SC-G18, isolated from marine environments of Malaysia. The bacteria isolates were identified by 16S rRNA sequencing and by biochemical and morphological tests. The 16S rRNA gene sequences of all isolates showed ≥96% similarity to Serratia spp. Antibiotic susceptibility test of isolates was assayed according to the Kirby-Bauer disc diffusion method. All isolates were highly resistant to beta-lactam antibiotics, but were susceptible to quinolone antibiotics. Minimum inhibitory concentration (MIC) of nine heavy metals (Ni2+, Co2+, Cr3+, Zn2+, Mn2+, Pb2+, Hg2+, Cd2+ and Cu2+) against the bacteria isolates were determined via the plate-dilution method. The isolates exhibited resistance to Ni2+, Co2+, Cr3+ and Zn2+. Isolates WPRA3 and SM11-3j showed higher multiple tolerances to heavy metals. The results obtained indicate that bacteria from marine environments of Malaysia present interesting metabolic activities, which should be studied and explored for potential biotechnological applications. 展开更多
关键词 Antibiotic SUSCEPTIBILITY HEAVY Metal Resistance SERRATIA sp Marine BACTERIA
下载PDF
Impact of Climate Change on Regional Hydroclimate Projection in Peninsular Malaysia
4
作者 Mohd Ekhwan Toriman Mazlin Bin Mokhtar +3 位作者 Rahmah E1-fithri NorAzlina Abdul Aziz Md.Pauzi Abdullah Muhamad Barzani Gasim 《Journal of Environmental Science and Engineering(A)》 2012年第1期41-45,共5页
For the assessment of the impact of future climate change on the hydrologic regime and water resources of Peninsular Malaysia, it is necessary to downscale the climate change simulations of a coarse scale General Circ... For the assessment of the impact of future climate change on the hydrologic regime and water resources of Peninsular Malaysia, it is necessary to downscale the climate change simulations of a coarse scale General Circulation Model to the region of Peninsular Malaysia at fine grid resolution. This paper presents a desktop review of the state of climate change parameters, namely rainfall and river flow over the Peninsular Malaysia for the 2041-2050 projection period. Analysis of the results from the models shows there will be a substantial increase in mean monthly precipitation over the North East Coastal region from historical 259.5 mm to 281.5 mm, from 289.0 mm to 299.0 mm and 221.8 mm to 239.5 mm over Terengganu and Kelantan, respectively. Meanwhile, for river flow projection, it will be an expected increase in interannual and intraseasonal variability with increased hydrologic extremes (higher high flows, and lower low flows) at Kelantan, Pahang, Terengganu, and Kedah watersheds in the future. 展开更多
关键词 Climate change peninsular Malaysia RAINFALL river flow.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部