Fast and effective remote sensing monitoring is an important means for analyzing the spatio-temporal changes in ecological quality in fragile karst regions.This study focuses on Guanling Autonomous County,a national-l...Fast and effective remote sensing monitoring is an important means for analyzing the spatio-temporal changes in ecological quality in fragile karst regions.This study focuses on Guanling Autonomous County,a national-level demonstration county for comprehensive desertification control.Based on Landsat TM/OLI remote sensing image data from 2005,2010,2015,and 2020,remote sensing ecological indices were used to analyze the spatio-temporal changes in ecological quality in Guanling Autonomous County from 2005 to 2020.The results show that:①the variance contribution rates of the first principal component for the four periods were 66.31%,71.59%,63.18%,and 75.24%,indicating that PC1 integrated most of the characteristics of the four indices,making the RSEI suitable for evaluating ecological quality in karst mountain areas;②the remote sensing ecological index grades have been increasing year by year,with an overall trend of improving ecological quality.The area of higher-grade ecological quality has increased spatially,while fragmented patches have gradually decreased,becoming more concentrated in the low-altitude areas in the northwest and east,and there is a trend of expansion towards higher-altitude areas;③the ecological environment quality in most areas has improved,with the improvement in RSEI spatio-temporal variation becoming more noticeable with increasing slope.Areas of higher-grade quality appeared in 2010,and the range of higher-grade quality expanded with increasing slope.展开更多
The Caohai Nature Reserve is one of the three major plateau freshwater lakes in China.Since the 1950s,human activities such as land reclamation and population relocation have greatly damaged Caohai.A rapid evaluation ...The Caohai Nature Reserve is one of the three major plateau freshwater lakes in China.Since the 1950s,human activities such as land reclamation and population relocation have greatly damaged Caohai.A rapid evaluation of the spatiotemporal evolution trend of the ecological quality of the Caohai Nature Reserve is significant for the maintenance and construction of the ecosystem in this area.The research is based on the Google Earth Engine(GEE)remote sensing cloud computing platform.Landsat TM/OLI images from May to October in five time periods:2000-2002,2004-2006,2009-2011,2014-2016,and 2019-2021 were obtained to reconstruct the optimal cloud image set by averaging the images in each time period.By constructing four ecological indicators:Greenness(NDVI),Wetness(Wet),Hotness(LST),and Dryness(NDBSI),and using Principal Component Analysis(PCA)method to obtain the Remote Sensing Ecological Index(RSEI)for the corresponding years,the spatiotemporal variation of ecological quality in the Caohai Nature Reserve over 20 years was analyzed.The results indicate:①the mean value of RSEI increased from 0.460 in 2000-2002 to 0.772 in 2019-2021,a 67.83%increase,indicating a significant improvement in the ecological quality of the reserve over the 20 years;②from the perspective of functional zoning of the Caohai Nature Reserve,the ecological quality of the core area showed a degrading trend,while the ecological quality of the buffer zone and experimental zone significantly improved;③with the implementation of ecological restoration projects,the ecological quality of the reserve gradually recovered and improved from 2014 to 2021.The trend of RSEI value changes is well correlated with human interventions,indicating that the PCA-based RSEI model can be effectively used for ecological quality assessment in lake areas.展开更多
In this paper,the authors collected officially published literature on the South China tiger(Panthera tigris amoyensis)in Guizhou from 1900 to 1980,from which we extracted information on its historical distribution an...In this paper,the authors collected officially published literature on the South China tiger(Panthera tigris amoyensis)in Guizhou from 1900 to 1980,from which we extracted information on its historical distribution and population size,and collected data on the tiger skin trade after 1950,the change in subtropical broad-leaved evergreen forest cover,and demographic data in the relevant databases.GIS mapping was used to visualize the distribution range of the South China tiger in Guizhou Province during the period 1900–1980 and to discuss the history of its disappearance in Guizhou and its driving factors.The results show that in 1900,the South China tiger was distributed throughout 82 cities and counties in nine prefectures and municipalities in the province;the number of documented South China tiger distribution sites in 1900–1950 decreased to 48 compared to 1900;the number of counties with South China tigers in 1950–1980 further decreased and became extinct in some areas;and in the 1990s,the South China tiger became extinct in the wild in Guizhou.The main reasons for the extinction of the South China tiger in the wild in Guizhou are:on the one hand,with the socio-economic development of Guizhou Province,the population has increased dramatically,the magnitude of the demand for natural resources has increased,and in order to satisfy this demand,human activities,such as coal mining and clearing of mountains for planting,have been intensified,resulting in the reduction of the coverage rate of the subtropical broad-leaved evergreen forests,which has resulted in the extreme loss of the habitat of the South China tiger;on the other hand,the insufficient protection efforts and protection measures for this species in the country before the 1980s,which were subjected to anthropogenic hunting,were also factors leading to the extinction of this species in the wild in Guizhou Province.As a big cat at the top of the food chain,the distribution of the South China tiger can reflect the history of the natural environment in the region.By analyzing and discussing the distribution history of the South China tiger population in Guizhou Province,the significance of this case is to provide a scientific basis for the future conservation of biodiversity and the development of ecological restoration measures in the karst mountains of southern China.展开更多
Zhangjiakou region is situated in an agro-pastoral ecotone with a fragile ecosystem. While it has limited surface water resources available and serious groundwater over-exploitation, the city is located in the water c...Zhangjiakou region is situated in an agro-pastoral ecotone with a fragile ecosystem. While it has limited surface water resources available and serious groundwater over-exploitation, the city is located in the water conservation zone for the Beijing-Tianjin-Hebei coordinated development area, so its water security is crucial for the entire Beijing-Tianjin-Hebei region. Therefore, it is of vital significance to determine the zoning management of water resources and decision-making according to the magnitude of water resource security risks. This study built an indicator system for water security risk assessment in line with the principles of scientific validity, comparability, operability, and data availability, and this system gives weights to these indicators using the AHP approach. County-level multi-source data for the study area, based on water resource zones, were collected by using mathematical statistics and 3 S technology. With normalized data and a weighting method the water security risks were calculated. The results showed large spatial variations of water security risks in Zhangjiakou on the scales of geomorphic and administrative units as well as river basins. High-risk areas are extensive in the Bashang Plateau, and extremely high risk values are found in the Baxia areas. On the watershed scale, high-risk areas are mainly distributed in the inland river basins and the Yongding River basin. The risk values of the Luanhe River, Chaobai River and Daqing River basins in the Zhangjiakou region tend to decrease from north to south. For the northern and western areas of the Bashang Plateau, the factor of "vulnerability of the disaster-prone environment" contributes the most to the water security risk level. Agricultural water use constrains industrial and ecological water use, but in the context of inadequate water resource endowments, the urban population concentration and industrial development are the main causes of water shortages and water pollution so they contribute more to water security risks. This study of the spatial variation of water security risks in Zhangjiakou can provide an important scientific reference for zone-based management and decision-making for reducing the water security risks in the farming-pastoral ecotone.展开更多
基金Supported by Guizhou Provincial Key Technology R&D Program ([2023]General 211)Guizhou Science and Technology Innovation Base Construction Project (Qian Ke He Zhong Yin Di[2023]005).
文摘Fast and effective remote sensing monitoring is an important means for analyzing the spatio-temporal changes in ecological quality in fragile karst regions.This study focuses on Guanling Autonomous County,a national-level demonstration county for comprehensive desertification control.Based on Landsat TM/OLI remote sensing image data from 2005,2010,2015,and 2020,remote sensing ecological indices were used to analyze the spatio-temporal changes in ecological quality in Guanling Autonomous County from 2005 to 2020.The results show that:①the variance contribution rates of the first principal component for the four periods were 66.31%,71.59%,63.18%,and 75.24%,indicating that PC1 integrated most of the characteristics of the four indices,making the RSEI suitable for evaluating ecological quality in karst mountain areas;②the remote sensing ecological index grades have been increasing year by year,with an overall trend of improving ecological quality.The area of higher-grade ecological quality has increased spatially,while fragmented patches have gradually decreased,becoming more concentrated in the low-altitude areas in the northwest and east,and there is a trend of expansion towards higher-altitude areas;③the ecological environment quality in most areas has improved,with the improvement in RSEI spatio-temporal variation becoming more noticeable with increasing slope.Areas of higher-grade quality appeared in 2010,and the range of higher-grade quality expanded with increasing slope.
基金Supported by Joint Project between Bijie Science and Technology Bureau and Guizhou University of Engineering Science (Bike Lianhe Zi (Guigongcheng)[2021]03)Guizhou Provincial Key Technology R&D Program (Qiankehe[2023]General 211).
文摘The Caohai Nature Reserve is one of the three major plateau freshwater lakes in China.Since the 1950s,human activities such as land reclamation and population relocation have greatly damaged Caohai.A rapid evaluation of the spatiotemporal evolution trend of the ecological quality of the Caohai Nature Reserve is significant for the maintenance and construction of the ecosystem in this area.The research is based on the Google Earth Engine(GEE)remote sensing cloud computing platform.Landsat TM/OLI images from May to October in five time periods:2000-2002,2004-2006,2009-2011,2014-2016,and 2019-2021 were obtained to reconstruct the optimal cloud image set by averaging the images in each time period.By constructing four ecological indicators:Greenness(NDVI),Wetness(Wet),Hotness(LST),and Dryness(NDBSI),and using Principal Component Analysis(PCA)method to obtain the Remote Sensing Ecological Index(RSEI)for the corresponding years,the spatiotemporal variation of ecological quality in the Caohai Nature Reserve over 20 years was analyzed.The results indicate:①the mean value of RSEI increased from 0.460 in 2000-2002 to 0.772 in 2019-2021,a 67.83%increase,indicating a significant improvement in the ecological quality of the reserve over the 20 years;②from the perspective of functional zoning of the Caohai Nature Reserve,the ecological quality of the core area showed a degrading trend,while the ecological quality of the buffer zone and experimental zone significantly improved;③with the implementation of ecological restoration projects,the ecological quality of the reserve gradually recovered and improved from 2014 to 2021.The trend of RSEI value changes is well correlated with human interventions,indicating that the PCA-based RSEI model can be effectively used for ecological quality assessment in lake areas.
文摘In this paper,the authors collected officially published literature on the South China tiger(Panthera tigris amoyensis)in Guizhou from 1900 to 1980,from which we extracted information on its historical distribution and population size,and collected data on the tiger skin trade after 1950,the change in subtropical broad-leaved evergreen forest cover,and demographic data in the relevant databases.GIS mapping was used to visualize the distribution range of the South China tiger in Guizhou Province during the period 1900–1980 and to discuss the history of its disappearance in Guizhou and its driving factors.The results show that in 1900,the South China tiger was distributed throughout 82 cities and counties in nine prefectures and municipalities in the province;the number of documented South China tiger distribution sites in 1900–1950 decreased to 48 compared to 1900;the number of counties with South China tigers in 1950–1980 further decreased and became extinct in some areas;and in the 1990s,the South China tiger became extinct in the wild in Guizhou.The main reasons for the extinction of the South China tiger in the wild in Guizhou are:on the one hand,with the socio-economic development of Guizhou Province,the population has increased dramatically,the magnitude of the demand for natural resources has increased,and in order to satisfy this demand,human activities,such as coal mining and clearing of mountains for planting,have been intensified,resulting in the reduction of the coverage rate of the subtropical broad-leaved evergreen forests,which has resulted in the extreme loss of the habitat of the South China tiger;on the other hand,the insufficient protection efforts and protection measures for this species in the country before the 1980s,which were subjected to anthropogenic hunting,were also factors leading to the extinction of this species in the wild in Guizhou Province.As a big cat at the top of the food chain,the distribution of the South China tiger can reflect the history of the natural environment in the region.By analyzing and discussing the distribution history of the South China tiger population in Guizhou Province,the significance of this case is to provide a scientific basis for the future conservation of biodiversity and the development of ecological restoration measures in the karst mountains of southern China.
基金The National Major Science and Technology Program for Water Pollution Control and Treatment (2017ZX07101001)Guizhou Normal University Doctoral Funds (GZNUD20178, GZNUD20179)Science and Technology Program of Guizhou Province (20191218, 20191222, 20201Z031)。
文摘Zhangjiakou region is situated in an agro-pastoral ecotone with a fragile ecosystem. While it has limited surface water resources available and serious groundwater over-exploitation, the city is located in the water conservation zone for the Beijing-Tianjin-Hebei coordinated development area, so its water security is crucial for the entire Beijing-Tianjin-Hebei region. Therefore, it is of vital significance to determine the zoning management of water resources and decision-making according to the magnitude of water resource security risks. This study built an indicator system for water security risk assessment in line with the principles of scientific validity, comparability, operability, and data availability, and this system gives weights to these indicators using the AHP approach. County-level multi-source data for the study area, based on water resource zones, were collected by using mathematical statistics and 3 S technology. With normalized data and a weighting method the water security risks were calculated. The results showed large spatial variations of water security risks in Zhangjiakou on the scales of geomorphic and administrative units as well as river basins. High-risk areas are extensive in the Bashang Plateau, and extremely high risk values are found in the Baxia areas. On the watershed scale, high-risk areas are mainly distributed in the inland river basins and the Yongding River basin. The risk values of the Luanhe River, Chaobai River and Daqing River basins in the Zhangjiakou region tend to decrease from north to south. For the northern and western areas of the Bashang Plateau, the factor of "vulnerability of the disaster-prone environment" contributes the most to the water security risk level. Agricultural water use constrains industrial and ecological water use, but in the context of inadequate water resource endowments, the urban population concentration and industrial development are the main causes of water shortages and water pollution so they contribute more to water security risks. This study of the spatial variation of water security risks in Zhangjiakou can provide an important scientific reference for zone-based management and decision-making for reducing the water security risks in the farming-pastoral ecotone.