The annual cycle characteristics of the SSH in the South China Sea (SCS) are analyzed based on the Sea Surface Height (SSH) anomaly data from the TOPEX / POSEIDON-ERS altimeter data and the Parallel Ocean Climate Mode...The annual cycle characteristics of the SSH in the South China Sea (SCS) are analyzed based on the Sea Surface Height (SSH) anomaly data from the TOPEX / POSEIDON-ERS altimeter data and the Parallel Ocean Climate Model (POCM) prediction. The results show that the distributions of the SSH anomalies of the SCS in January, March and May, are opposite to those in July, September and November respectively; In January (July) there is the SSH negative (positive) anomaly in the deep water basin and at the Luzon Strait, while there is positive (negative) anomaly on the most of continental shelves in the west and south of South China Sea; In March (September) the SSH anomalies are similar to those in January (July), although their magnitudes have decreased and a small positive (negative) anomaly appears in the center of the South China Sea; The amplitude of the SSH annual cycle reaches its maximum in the Northwest of the Luzon Island; The seasonal variability of the wind stress is dominant in the formation of the SSH seasonal variability.展开更多
Princeton Ocean Model is used to study the response of Jervis Bay, NSW, Australia, to the local wind and remote shelf coastal trapped wave (CTW) forcings in summer seasons when the water column is stratified by the wa...Princeton Ocean Model is used to study the response of Jervis Bay, NSW, Australia, to the local wind and remote shelf coastal trapped wave (CTW) forcings in summer seasons when the water column is stratified by the water temperature.The study has revealed that the response of bay to the wind forcing is the generation of the wind driven currents and the internal Kelvin waves (IKW). However, both temperature and flow sub-inertial oscillations in the bay are weaker than those from the observations and the correlation between the modeled and observed low frequency currents is low. In response to the forcing of CTWs on the adjacent shelf, IKWs are also established in the bay and amplitudes of sub-inertial oscillations of temperature and currents agree better with the observations. It can be concluded that sub-inertial baroclinic flows in the bay is dominantly forced by remote CTW on the shelf adjacent to Jervis Bay during thermally stratified summer seasons.展开更多
基金the NSFC (No. 49636230) National Key Program for Developing Basic Science (G 1999043807) of Ministry of Science Technology
文摘The annual cycle characteristics of the SSH in the South China Sea (SCS) are analyzed based on the Sea Surface Height (SSH) anomaly data from the TOPEX / POSEIDON-ERS altimeter data and the Parallel Ocean Climate Model (POCM) prediction. The results show that the distributions of the SSH anomalies of the SCS in January, March and May, are opposite to those in July, September and November respectively; In January (July) there is the SSH negative (positive) anomaly in the deep water basin and at the Luzon Strait, while there is positive (negative) anomaly on the most of continental shelves in the west and south of South China Sea; In March (September) the SSH anomalies are similar to those in January (July), although their magnitudes have decreased and a small positive (negative) anomaly appears in the center of the South China Sea; The amplitude of the SSH annual cycle reaches its maximum in the Northwest of the Luzon Island; The seasonal variability of the wind stress is dominant in the formation of the SSH seasonal variability.
文摘Princeton Ocean Model is used to study the response of Jervis Bay, NSW, Australia, to the local wind and remote shelf coastal trapped wave (CTW) forcings in summer seasons when the water column is stratified by the water temperature.The study has revealed that the response of bay to the wind forcing is the generation of the wind driven currents and the internal Kelvin waves (IKW). However, both temperature and flow sub-inertial oscillations in the bay are weaker than those from the observations and the correlation between the modeled and observed low frequency currents is low. In response to the forcing of CTWs on the adjacent shelf, IKWs are also established in the bay and amplitudes of sub-inertial oscillations of temperature and currents agree better with the observations. It can be concluded that sub-inertial baroclinic flows in the bay is dominantly forced by remote CTW on the shelf adjacent to Jervis Bay during thermally stratified summer seasons.