In recent years, with numerous developments of convolutional neural network (CNN) classification models for medical diagnosis, the issue of misrecognition/misclassification has become more and more important. Thus, re...In recent years, with numerous developments of convolutional neural network (CNN) classification models for medical diagnosis, the issue of misrecognition/misclassification has become more and more important. Thus, research on misrecognition/misclassification has been progressing. This study focuses on the problem of misrecognition/misclassification of CNN classification models for coronavirus disease (COVID-19) using chest X-ray images. We construct two models for COVID-19 pneumonia classification by fine-tuning ResNet-50 architecture, i.e., a model retrained with full-sized original images and a model retrained with segmented images. The present study demonstrates the uncertainty (misrecognition/misclassification) of model performance caused by the discrepancy in the shapes of images at the phase of model construction and that of clinical applications. To achieve it, we apply three XAI methods to demonstrate and explain the uncertainty of classification results obtained from the two constructed models assuming for clinical applications. Experimental results indicate that the performance of classification models cannot be maintained when the type of constructed model and the geometric shape of input images are not matched, which may bring about misrecognition in clinical applications. We also notice that the effect of adversarial attack might be induced if the method of image segmentation is not performed properly. The results suggest that the best approach to obtaining a highly reliable prediction in the classification of COVID-19 pneumonia is to construct a model using full-sized original images as training data and use full-sized original images as the input when utilized in clinical applications.展开更多
In a convolutional neural network (CNN) classification model for diagnosing medical images, transparency and interpretability of the model’s behavior are crucial in addition to high classification accuracy, and it is...In a convolutional neural network (CNN) classification model for diagnosing medical images, transparency and interpretability of the model’s behavior are crucial in addition to high classification accuracy, and it is highly important to explicitly demonstrate them. In this study, we constructed an interpretable CNN-based model for breast density classification using spectral information from mammograms. We evaluated whether the model’s prediction scores provided reliable probability values using a reliability diagram and visualized the basis for the final prediction. In constructing the classification model, we modified ResNet50 and introduced algorithms for extracting and inputting image spectra, visualizing network behavior, and quantifying prediction ambiguity. From the experimental results, our proposed model demonstrated not only high classification accuracy but also higher reliability and interpretability compared to the conventional CNN models that use pixel information from images. Furthermore, our proposed model can detect misclassified data and indicate explicit basis for prediction. The results demonstrated the effectiveness and usefulness of our proposed model from the perspective of credibility and transparency.展开更多
文摘In recent years, with numerous developments of convolutional neural network (CNN) classification models for medical diagnosis, the issue of misrecognition/misclassification has become more and more important. Thus, research on misrecognition/misclassification has been progressing. This study focuses on the problem of misrecognition/misclassification of CNN classification models for coronavirus disease (COVID-19) using chest X-ray images. We construct two models for COVID-19 pneumonia classification by fine-tuning ResNet-50 architecture, i.e., a model retrained with full-sized original images and a model retrained with segmented images. The present study demonstrates the uncertainty (misrecognition/misclassification) of model performance caused by the discrepancy in the shapes of images at the phase of model construction and that of clinical applications. To achieve it, we apply three XAI methods to demonstrate and explain the uncertainty of classification results obtained from the two constructed models assuming for clinical applications. Experimental results indicate that the performance of classification models cannot be maintained when the type of constructed model and the geometric shape of input images are not matched, which may bring about misrecognition in clinical applications. We also notice that the effect of adversarial attack might be induced if the method of image segmentation is not performed properly. The results suggest that the best approach to obtaining a highly reliable prediction in the classification of COVID-19 pneumonia is to construct a model using full-sized original images as training data and use full-sized original images as the input when utilized in clinical applications.
文摘In a convolutional neural network (CNN) classification model for diagnosing medical images, transparency and interpretability of the model’s behavior are crucial in addition to high classification accuracy, and it is highly important to explicitly demonstrate them. In this study, we constructed an interpretable CNN-based model for breast density classification using spectral information from mammograms. We evaluated whether the model’s prediction scores provided reliable probability values using a reliability diagram and visualized the basis for the final prediction. In constructing the classification model, we modified ResNet50 and introduced algorithms for extracting and inputting image spectra, visualizing network behavior, and quantifying prediction ambiguity. From the experimental results, our proposed model demonstrated not only high classification accuracy but also higher reliability and interpretability compared to the conventional CNN models that use pixel information from images. Furthermore, our proposed model can detect misclassified data and indicate explicit basis for prediction. The results demonstrated the effectiveness and usefulness of our proposed model from the perspective of credibility and transparency.