The energy and spectral shape of radio bursts may help us understand the generation mechanism of solar eruptions,including solar flares,coronal mass ejections,eruptive filaments,and various scales of jets.The differen...The energy and spectral shape of radio bursts may help us understand the generation mechanism of solar eruptions,including solar flares,coronal mass ejections,eruptive filaments,and various scales of jets.The different kinds of flares may have different characteristics of energy and spectral distribution.In this work,we selected 10 mostly confined flare events during October 2014 to investigate their overall spectral behaviour and the energy emitted in microwaves by using radio observations from microwaves to interplanetary radio waves,and X-ray observations of GOES,RHESSI,and Fermi/GBM.We found that:all the confined flare events were associated with a microwave continuum burst extending to frequencies of9.4~15.4 GHz,and the peak frequencies of all confined flare events are higher than 4.995 GHz and lower than or equal to 17 GHz.The median value is around 9 GHz.The microwave burst energy(or nuence)and the peak frequency are found to provide useful criteria to estimate the power of solar flares.The observations imply that the magnetic field in confined flares tends to be stronger than that in 412 flares studied by Nita et al.(2004).All 10 events studied did not produce detectable hard X-rays with energies above~300 keV indicating the lack of efficient acceleration of electrons to high energies in the confined flares.展开更多
In general,Variable-Speed Constant Frequency (VSCF)Wind generation system is controlled by stator voltage orientation method which based on the mathematic model of VSCF Wind generation system and discussed the control...In general,Variable-Speed Constant Frequency (VSCF)Wind generation system is controlled by stator voltage orientation method which based on the mathematic model of VSCF Wind generation system and discussed the control strategy.Present the whole dynamic control model of variable-speed wind generator system in MATLAB/ Simulink,and the simulation results confirm the validity and effectiveness of the proposed control strategy.展开更多
The Android operating system provides a rich Inter-Component Communication(ICC) method that brings enormous convenience. However, the Android ICC also increases security risks. To address this problem, a formal method...The Android operating system provides a rich Inter-Component Communication(ICC) method that brings enormous convenience. However, the Android ICC also increases security risks. To address this problem, a formal method is proposed to model and detect inter-component communication behavior in Android applications. Firstly,we generate data flow graphs and data facts for each component through component-level data flow analysis.Secondly, our approach treats ICC just like method calls. After analyzing the fields and data dependencies of the intent, we identify the ICC caller and callee, track the data flow between them, and construct the ICC model. Thirdly,the behavior model of Android applications is constructed by a formal mapping method for component data flow graph based on Pi calculus. The runtime sensitive path trigger detection algorithm is then given. Communicationbased attacks are detected by analyzing intent abnormity. Finally, we analyze the modeling and detection efficiency,and compare it with relevant methods. Analysis of 57 real-world applications partly verifies the effectiveness of the proposed method.展开更多
基金the National Natural Science Foundation of China(NSFC,Grant Nos.11790301,11973057,11941003,11790305 and 61811530282)Chinese-French cooperation between CNRS and NSFC,the MOST(Grant No.2014FY120300)+5 种基金the National Key R&D Program of China(Grant No.2018YFA0404602)the International Partnership Program of Chinese Academy of Sciences(Grant No.183311KYSB20200003)the Application and Foundation Project of Yunnan Province(Grant No.202001BB050032)the Commission for Collaborating Research Program of CAS KLSA,NAOC(Grant No.KLSA202115)supported by ISSI-BJsupported by the international joint research program of the Institute for Space-Earth Environmental Research at Nagoya University and JSPS KAKENHI,grant No.JP18H01253。
文摘The energy and spectral shape of radio bursts may help us understand the generation mechanism of solar eruptions,including solar flares,coronal mass ejections,eruptive filaments,and various scales of jets.The different kinds of flares may have different characteristics of energy and spectral distribution.In this work,we selected 10 mostly confined flare events during October 2014 to investigate their overall spectral behaviour and the energy emitted in microwaves by using radio observations from microwaves to interplanetary radio waves,and X-ray observations of GOES,RHESSI,and Fermi/GBM.We found that:all the confined flare events were associated with a microwave continuum burst extending to frequencies of9.4~15.4 GHz,and the peak frequencies of all confined flare events are higher than 4.995 GHz and lower than or equal to 17 GHz.The median value is around 9 GHz.The microwave burst energy(or nuence)and the peak frequency are found to provide useful criteria to estimate the power of solar flares.The observations imply that the magnetic field in confined flares tends to be stronger than that in 412 flares studied by Nita et al.(2004).All 10 events studied did not produce detectable hard X-rays with energies above~300 keV indicating the lack of efficient acceleration of electrons to high energies in the confined flares.
文摘In general,Variable-Speed Constant Frequency (VSCF)Wind generation system is controlled by stator voltage orientation method which based on the mathematic model of VSCF Wind generation system and discussed the control strategy.Present the whole dynamic control model of variable-speed wind generator system in MATLAB/ Simulink,and the simulation results confirm the validity and effectiveness of the proposed control strategy.
基金supported by the Hebei Provincial Natural Science Foundation(Nos.F2016203290 and F2017203307)the National Natural Science Foundation of China(No.61772450)+3 种基金the Doctoral Foundation of Yanshan University(Nos.BL18011 and B906)the Hebei Normal University of Science and Technology Scientific Research Foundation(No.2018YB019)the China Postdoctoral Science Foundation(No.2018M631764)the Hebei Province Science and Technology Planning Project(No.17210701D)
文摘The Android operating system provides a rich Inter-Component Communication(ICC) method that brings enormous convenience. However, the Android ICC also increases security risks. To address this problem, a formal method is proposed to model and detect inter-component communication behavior in Android applications. Firstly,we generate data flow graphs and data facts for each component through component-level data flow analysis.Secondly, our approach treats ICC just like method calls. After analyzing the fields and data dependencies of the intent, we identify the ICC caller and callee, track the data flow between them, and construct the ICC model. Thirdly,the behavior model of Android applications is constructed by a formal mapping method for component data flow graph based on Pi calculus. The runtime sensitive path trigger detection algorithm is then given. Communicationbased attacks are detected by analyzing intent abnormity. Finally, we analyze the modeling and detection efficiency,and compare it with relevant methods. Analysis of 57 real-world applications partly verifies the effectiveness of the proposed method.