To model the strain-inducedγ→α′phase transformation for the Cr-Mn metastable austenitic stainless steel,the 201Cu steel was chosen as the analytical material and the cylindrical samples of this steel with size ofϕ...To model the strain-inducedγ→α′phase transformation for the Cr-Mn metastable austenitic stainless steel,the 201Cu steel was chosen as the analytical material and the cylindrical samples of this steel with size ofϕ5 mm×10 mm were compressed at strains of 0.2–0.6 in the temperature range of 25–150°C and in the strain rate range of 0.1–5.0 s^(−1).The flaky samples were prepared by wire cutting from the cylindrical samples and the volume fraction of the strain-inducedα′phase was detected in the test point of the flaky samples.The volume fraction changing with the process parameters was modeled,and the critical temperatures and the critical strains to preventγ→α′phase transformation were calculated as other different process parameters changed.The linear fitting goodness of the model between the calculated volume fraction values and the tested ones is 0.986 and the validity of the model was verified by application in cold and warm rolling experiments.展开更多
基金the financial support from the Open Project provided by the State Key Laboratory of Development and Application Technology of Automotive Steels(Baowu Steel Group)(Grant No.Y21ECEQ17Y).
文摘To model the strain-inducedγ→α′phase transformation for the Cr-Mn metastable austenitic stainless steel,the 201Cu steel was chosen as the analytical material and the cylindrical samples of this steel with size ofϕ5 mm×10 mm were compressed at strains of 0.2–0.6 in the temperature range of 25–150°C and in the strain rate range of 0.1–5.0 s^(−1).The flaky samples were prepared by wire cutting from the cylindrical samples and the volume fraction of the strain-inducedα′phase was detected in the test point of the flaky samples.The volume fraction changing with the process parameters was modeled,and the critical temperatures and the critical strains to preventγ→α′phase transformation were calculated as other different process parameters changed.The linear fitting goodness of the model between the calculated volume fraction values and the tested ones is 0.986 and the validity of the model was verified by application in cold and warm rolling experiments.