期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Statistic PID Tracking Control for Non-Gaussian Stochastic Systems Based on T-S Fuzzy Model 被引量:3
1
作者 Yang Yi Hong Shen Lei Gu 《International Journal of Automation and computing》 EI 2009年第1期81-87,共7页
A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model ident... A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model identification. The tracked object is the statistical information of a given target probability density function (PDF), rather than a deterministic signal. Following B-spline approximation to the integrated performance function, the concerned problem is transferred into the tracking of given weights. Different from the previous related works, the time delay T-S fuzzy models with the exogenous disturbances are applied to identify the nonlinear weighting dynamics. Meanwhile, the generalized PID controller structure and the improved convex linear matrix inequalities (LMI) algorithms are proposed to fulfil the tracking problem. Furthermore, in order to enhance the robust performance, the peak-to-peak measure index is applied to optimize the tracking performance. Simulations are given to demonstrate the efficiency of the proposed approach. 展开更多
关键词 Non-Gaussian systems probability density function statistic tracking control T-S fuzzy model proportional-integralderivative control.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部