Organometal halide perovskites are promising semiconducting materials for photodetectors because of their favorable optoelectrical properties.Although nanoscale perovskite materials such as quantum dots(QDs)show novel...Organometal halide perovskites are promising semiconducting materials for photodetectors because of their favorable optoelectrical properties.Although nanoscale perovskite materials such as quantum dots(QDs)show novel behavior,they have intrinsic stability issues.In this study,an effectively silane barrier-capped quantum dot(QD@APDEMS)is thinly applied onto a bulk perovskite photosensitive layer for use in photodetectors.QD@APDEMS is synthesized with a silane ligand with hydrophobic CH_(3)-terminal groups,resulting in excellent dispersibility and durability to enable effective coating.The introduction of the QD@APDEMS layer results in the formation of a lowdefect perovskite film with enlarged grains.This is attributed to the grain boundary interconnection effect via interaction between the functional groups of QD@APDEMS and uncoordinated Pb^(2+)in grain boundaries.By passivating the grain boundaries,where various trap sites are distributed,hole chargecarrier injection and shunt leakage can be suppressed.Also,from the energy point of view,the deep highest occupied molecular orbital(HOMO)level of QD@APDEMS can work as a hole charge injection barrier.Improved charge dynamics(generation,transfer,and recombination properties)and reduced trap density of QD@APDEMS are demonstrated.When this perovskite film is used in a photodetector,the device performance(especially the detectivity)stands out among existing perovskites evaluated for energy sensing device applications.展开更多
In recent times,future energy storage systems demand a multitude of functionalities beyond their traditional energy storage capabilities.In line with this technological shift,there is active research and development o...In recent times,future energy storage systems demand a multitude of functionalities beyond their traditional energy storage capabilities.In line with this technological shift,there is active research and development of electrochromic-energy storage systems designed to visualize electrochemical charging and discharging processes.The conventional electrochromic-energy storage devices primarily integrated supercapacitors,known for their high power density,to enable rapid color contrast.However,the low energy density of supercapacitors restricts overall energy storage capacity,acting as a significant barrier to expanding the application range of such systems.In this review,we introduce electrochromic zinc(Zn)-ion battery systems,which effectively overcome the limitation of low energy density,and provide illustrative examples of their applicability across diverse fields.Although many recent research works are present for electrochromic Zn-ion batteries,little review has so far taken place.Our objective is to discuss on the current progress and future directions for electrochromic Zn-ion batteries,which are applicable for wearable electronics applications and energy storage systems.This review provides an initial milestone for future researchers in electrochromic energy storage and zinc-ion batteries,which will lead to a stream of future works related to them.展开更多
In feature-based visual localization for small-scale scenes,local descriptors are used to estimate the camera pose of a query image.For large and ambiguous environments,learning-based hierarchical networks that employ...In feature-based visual localization for small-scale scenes,local descriptors are used to estimate the camera pose of a query image.For large and ambiguous environments,learning-based hierarchical networks that employ local as well as global descriptors to reduce the search space of database images into a smaller set of reference views have been introduced.However,since global descriptors are generated using visual features,reference images with some of these features may be erroneously selected.In order to address this limitation,this paper proposes two clustering methods based on how often features appear as well as their covisibility.For both approaches,the scene is represented by voxels whose size and number are computed according to the size of the scene and the number of available 3Dpoints.In the first approach,a voxel-based histogram representing highly reoccurring scene regions is generated from reference images.A meanshift is then employed to group the most highly reoccurring voxels into place clusters based on their spatial proximity.In the second approach,a graph representing the covisibility-based relationship of voxels is built.Local matching is performed within the reference image clusters,and a perspective-n-point is employed to estimate the camera pose.The experimental results showed that camera pose estimation using the proposed approaches was more accurate than that of previous methods.展开更多
Interaction between tumour cells and macrophages enables cancer cells to evade immune detection and clearance by interfering with macrophage phagocytosis.The anti-phagocytic signals regulated by anti-phagocytic protei...Interaction between tumour cells and macrophages enables cancer cells to evade immune detection and clearance by interfering with macrophage phagocytosis.The anti-phagocytic signals regulated by anti-phagocytic proteins are termed"don't eat me"signals;these signals include sialic acidbinding immunoglobulin-type lectin-10(Siglec-10)and the recently revealed CD24 immune checkpoint(ICP).In this study,we demonstrate that targeting a specific glycan on CD24 exhibits the potential to inhibit ICP.Sambucus nigra agglutinin(SNA),a sialic acid-binding lectin,was employed to block CD24 and to enhance phagocytosis in melanoma tumours.In addition,we prepared SNA-conjugated hollow gold-iron oxide nanoparticles for photothermal therapy of tumours.Our findings show that the combination treatment of SNA-conjugated photothermal nanoparticles and near-infrared exposure successfully augments tumour cell phagocytosis both in vitro and in vivo models.展开更多
This study attempts to develop a reproducible thin-film formation technique called vacuum-free(VF)lamination,which transfers thin films using elastomeric polymer-based laminating mediators.Precisely,by controlling the...This study attempts to develop a reproducible thin-film formation technique called vacuum-free(VF)lamination,which transfers thin films using elastomeric polymer-based laminating mediators.Precisely,by controlling the interface characteristics of the mediator based on the work of adhesion,VF lamination is successfully performed for various thicknesses(from 20 to 240 nm)of a conjugated photoactive material composed of poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-bʹ]dithiophene))-alt-(5,5-(1ʹ,3ʹ-di-2-thienyl-5ʹ,7ʹ-bis(2-ethylhexyl)benzo[1ʹ,2ʹ-c:4ʹ,5ʹ-cʹ]dithiophene-4,8-dione)](a polymer donor)and 2,2ʹ-((2Z,2ʹZ)-((12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2ʹʹ,3ʹʹ:4ʹ,5ʹ]thieno[2ʹ,3ʹ:4,5]pyrrolo[3,2-g]thieno[2ʹ,3ʹ:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(a nonfullerene acceptor).Interestingly,the organic photovoltaic and photodetecting applications,prepared by the VF lamination process,showed superior performance compared to those of devices prepared by conventional spin-coating.This is due to the overturned surface morphology,which led to enhanced charge transport ability and blocking of the externally injected charge.Thus,the reproducible VF lamination process,exploiting an adhesion-based elastomeric polymer mediator,is a promising thin-film formation technique for developing efficient next-generation organic optoelectronic materials consistent with the solution process.展开更多
Direct messenger ribonucleic acid(mRNA)delivery to target cells or tissues has revolutionized the field of biotechnology.However,the applicability of regenerative medicine is limited by the technical difficulties of v...Direct messenger ribonucleic acid(mRNA)delivery to target cells or tissues has revolutionized the field of biotechnology.However,the applicability of regenerative medicine is limited by the technical difficulties of various mRNA-loaded nanocarriers.Herein,we report a new conductive hybrid film that could guide osteogenic differentiation of human adipose-derived mesenchymal stem cells(hADMSCs)via electrically controlled mRNA delivery.To find optimal electrical conductivity and mRNAloading capacity,the polypyrrole-graphene oxide(PPy-GO)hybrid film was electropolymerized on indium tin oxide substrates.We found that the fluorescein sodium salt,a molecule partially mimicking the physical and chemical properties of mRNAs,can be effectively absorbed and released by electrical stimulation(ES).The hADMSCs cultivated on the PPy-GO hybrid film loaded with pre-osteogenic mRNAs showed the highest osteogenic differentiation under electrical stimulation.This platform can load various types of RNAs thus highly promising as a new nucleic acid delivery tool for the development of stem cell-based therapeutics.展开更多
The functional recovery of peripheral nerve injury(PNI)is unsatisfactory,whereas diabetes mellitus(DM)and its related complications further attenuate the restoration of diabetic PNI(DPNI).Adipose-derived stem cells(AD...The functional recovery of peripheral nerve injury(PNI)is unsatisfactory,whereas diabetes mellitus(DM)and its related complications further attenuate the restoration of diabetic PNI(DPNI).Adipose-derived stem cells(ADSCs)are promising candidates for treatment of DPNI due to their abundant source,excellent differentiation and paracrine ability.Our results showed that ADSCs remarkably enhanced the proliferation and migration of Schwann cells and endothelial cells,and tube formation.Mechanistically,ADSCs could regulate Nrf2/HO-1,NF-κB and PI3K/AKT/mTOR signaling pathways,showing multiple functions in reducing oxidative stress and inflammation,and regulating cell metabolism,growth,survival,proliferation,angiogenesis,differentiation of Schwann cell and myelin formation.In current study,novel graphene foam(GF)/hydrogel-based scaffold was developed to deliver ADSCs for treatment of DPNI.GF/hydrogel scaffold exhibited excellent mechanical strength,suitable porous network,superior electrical conductivity,and good biocompatibility.In vitro results revealed that GF/hydrogel scaffold could obviously accelerate proliferation of Schwann cells.Moreover,in vivo experiments demonstrated that ADSCs-loaded GF/hydrogel scaffold significantly promoted the recovery of DPNI and inhibited the atrophy of targeted muscles,thus providing a novel and attractive therapeutic approach for DPNI patients.展开更多
Efforts to map atomic-scale chemistry at low doses with minimal noise using electron microscopes are fundamentally limited by inelastic interactions.Here,fused multi-modal electron microscopy offers high signal-to-noi...Efforts to map atomic-scale chemistry at low doses with minimal noise using electron microscopes are fundamentally limited by inelastic interactions.Here,fused multi-modal electron microscopy offers high signal-to-noise ratio(SNR)recovery of material chemistry at nano-and atomic-resolution by coupling correlated information encoded within both elastic scattering(high-angle annular dark-field(HAADF))and inelastic spectroscopic signals(electron energy loss(EELS)or energy-dispersive x-ray(EDX)).By linking these simultaneously acquired signals,or modalities,the chemical distribution within nanomaterials can be imaged at significantly lower doses with existing detector hardware.In many cases,the dose requirements can be reduced by over one order of magnitude.This high SNR recovery of chemistry is tested against simulated and experimental atomic resolution data of heterogeneous nanomaterials.展开更多
基金Ministry of Trade,Industry and Energy,Grant/Award Numbers:20017439,20021915National Research Foundation of Korea,Grant/Award Number:2019R1A2C1087653。
文摘Organometal halide perovskites are promising semiconducting materials for photodetectors because of their favorable optoelectrical properties.Although nanoscale perovskite materials such as quantum dots(QDs)show novel behavior,they have intrinsic stability issues.In this study,an effectively silane barrier-capped quantum dot(QD@APDEMS)is thinly applied onto a bulk perovskite photosensitive layer for use in photodetectors.QD@APDEMS is synthesized with a silane ligand with hydrophobic CH_(3)-terminal groups,resulting in excellent dispersibility and durability to enable effective coating.The introduction of the QD@APDEMS layer results in the formation of a lowdefect perovskite film with enlarged grains.This is attributed to the grain boundary interconnection effect via interaction between the functional groups of QD@APDEMS and uncoordinated Pb^(2+)in grain boundaries.By passivating the grain boundaries,where various trap sites are distributed,hole chargecarrier injection and shunt leakage can be suppressed.Also,from the energy point of view,the deep highest occupied molecular orbital(HOMO)level of QD@APDEMS can work as a hole charge injection barrier.Improved charge dynamics(generation,transfer,and recombination properties)and reduced trap density of QD@APDEMS are demonstrated.When this perovskite film is used in a photodetector,the device performance(especially the detectivity)stands out among existing perovskites evaluated for energy sensing device applications.
基金supported by funding from Bavarian Center for Battery Technology(Bay Batt),Bayerisch-Tschechische Hochschulagentur(BTHA)(BTHA-AP-2022-45,BTHA-AP-2023-5,BTHA-AP2023-12,and BTHA-AP-2023-38)the University of BayreuthDeakin University Joint Ph.D.Program,Bayerische Forschungallianz(Bay FOR)(Bay Int An_UBT_2023_84)+2 种基金BK21 program from National Research Foundation of Korea,Erasmus+program from the European Union,Ministry of Education,Science and Technology as part of the Higher Education for Economic Transformation(HEET)Project(World Bank)Verband der Chemischen Industrie(Fonds der Chemischen Industrie,No.661740)collaboration project funding from Kangwon National University and LINC 3.0 Research Center,and the Deutsche Forschungsgemeinschaft(DFG,project number:533115776)。
文摘In recent times,future energy storage systems demand a multitude of functionalities beyond their traditional energy storage capabilities.In line with this technological shift,there is active research and development of electrochromic-energy storage systems designed to visualize electrochemical charging and discharging processes.The conventional electrochromic-energy storage devices primarily integrated supercapacitors,known for their high power density,to enable rapid color contrast.However,the low energy density of supercapacitors restricts overall energy storage capacity,acting as a significant barrier to expanding the application range of such systems.In this review,we introduce electrochromic zinc(Zn)-ion battery systems,which effectively overcome the limitation of low energy density,and provide illustrative examples of their applicability across diverse fields.Although many recent research works are present for electrochromic Zn-ion batteries,little review has so far taken place.Our objective is to discuss on the current progress and future directions for electrochromic Zn-ion batteries,which are applicable for wearable electronics applications and energy storage systems.This review provides an initial milestone for future researchers in electrochromic energy storage and zinc-ion batteries,which will lead to a stream of future works related to them.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2018R1D1A1B07049932).
文摘In feature-based visual localization for small-scale scenes,local descriptors are used to estimate the camera pose of a query image.For large and ambiguous environments,learning-based hierarchical networks that employ local as well as global descriptors to reduce the search space of database images into a smaller set of reference views have been introduced.However,since global descriptors are generated using visual features,reference images with some of these features may be erroneously selected.In order to address this limitation,this paper proposes two clustering methods based on how often features appear as well as their covisibility.For both approaches,the scene is represented by voxels whose size and number are computed according to the size of the scene and the number of available 3Dpoints.In the first approach,a voxel-based histogram representing highly reoccurring scene regions is generated from reference images.A meanshift is then employed to group the most highly reoccurring voxels into place clusters based on their spatial proximity.In the second approach,a graph representing the covisibility-based relationship of voxels is built.Local matching is performed within the reference image clusters,and a perspective-n-point is employed to estimate the camera pose.The experimental results showed that camera pose estimation using the proposed approaches was more accurate than that of previous methods.
基金a National Research Foundation of Korea(NRF)grant the Korean government(MSIT)(Nos.2020R1A5A1018052,2017M3A7B8061942,2019R1A2C1006018,2021R1A4A5032463 and 2021M3H4A4079629,Republic of Korea)。
文摘Interaction between tumour cells and macrophages enables cancer cells to evade immune detection and clearance by interfering with macrophage phagocytosis.The anti-phagocytic signals regulated by anti-phagocytic proteins are termed"don't eat me"signals;these signals include sialic acidbinding immunoglobulin-type lectin-10(Siglec-10)and the recently revealed CD24 immune checkpoint(ICP).In this study,we demonstrate that targeting a specific glycan on CD24 exhibits the potential to inhibit ICP.Sambucus nigra agglutinin(SNA),a sialic acid-binding lectin,was employed to block CD24 and to enhance phagocytosis in melanoma tumours.In addition,we prepared SNA-conjugated hollow gold-iron oxide nanoparticles for photothermal therapy of tumours.Our findings show that the combination treatment of SNA-conjugated photothermal nanoparticles and near-infrared exposure successfully augments tumour cell phagocytosis both in vitro and in vivo models.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Science,ICT (MSIT) (Grant Nos.2023R1A2C2008021 and RS-2023-00217270)supported by the Technology Innovation Program (Grant No.20017439,“Development of manufacturing process technique on high-speed signal transmission line for 6G device,”and Grant No.20021915,“Development on Nanocomposite Material of Optical Film[GPa]for Foldable Devices”)funded by the Ministry of Trade,Industry&Energy (MOTIE,Korea).
文摘This study attempts to develop a reproducible thin-film formation technique called vacuum-free(VF)lamination,which transfers thin films using elastomeric polymer-based laminating mediators.Precisely,by controlling the interface characteristics of the mediator based on the work of adhesion,VF lamination is successfully performed for various thicknesses(from 20 to 240 nm)of a conjugated photoactive material composed of poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-bʹ]dithiophene))-alt-(5,5-(1ʹ,3ʹ-di-2-thienyl-5ʹ,7ʹ-bis(2-ethylhexyl)benzo[1ʹ,2ʹ-c:4ʹ,5ʹ-cʹ]dithiophene-4,8-dione)](a polymer donor)and 2,2ʹ-((2Z,2ʹZ)-((12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2ʹʹ,3ʹʹ:4ʹ,5ʹ]thieno[2ʹ,3ʹ:4,5]pyrrolo[3,2-g]thieno[2ʹ,3ʹ:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(a nonfullerene acceptor).Interestingly,the organic photovoltaic and photodetecting applications,prepared by the VF lamination process,showed superior performance compared to those of devices prepared by conventional spin-coating.This is due to the overturned surface morphology,which led to enhanced charge transport ability and blocking of the externally injected charge.Thus,the reproducible VF lamination process,exploiting an adhesion-based elastomeric polymer mediator,is a promising thin-film formation technique for developing efficient next-generation organic optoelectronic materials consistent with the solution process.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Nos.NRF-2019M3A9H_(2)031820,NRF-2021R1A2C1010747,and NRF-2022R1A2C4002217)Korean Fund for Regenerative Medicine funded by Ministry of Science and ICT,and Ministry of Health and Welfare(Grant No.RS-2022-00070316)+1 种基金the Bio&Medical Technology Development Program funded by the Ministry of Science,ICT and Future Planning,Republic of Korea(NRF-2017M3A9E4047243)d K.S.also thankful for The Council of Higher Education(CoHE,100/2000)PhD Scholarship Program,Turkey.
文摘Direct messenger ribonucleic acid(mRNA)delivery to target cells or tissues has revolutionized the field of biotechnology.However,the applicability of regenerative medicine is limited by the technical difficulties of various mRNA-loaded nanocarriers.Herein,we report a new conductive hybrid film that could guide osteogenic differentiation of human adipose-derived mesenchymal stem cells(hADMSCs)via electrically controlled mRNA delivery.To find optimal electrical conductivity and mRNAloading capacity,the polypyrrole-graphene oxide(PPy-GO)hybrid film was electropolymerized on indium tin oxide substrates.We found that the fluorescein sodium salt,a molecule partially mimicking the physical and chemical properties of mRNAs,can be effectively absorbed and released by electrical stimulation(ES).The hADMSCs cultivated on the PPy-GO hybrid film loaded with pre-osteogenic mRNAs showed the highest osteogenic differentiation under electrical stimulation.This platform can load various types of RNAs thus highly promising as a new nucleic acid delivery tool for the development of stem cell-based therapeutics.
基金This study is financially supported by the National Natural Science Foundation of China(Nos.81971758,51890892,81971712,81870346,and 81700432)the Natural Science Foundation of Shanghai Science and Technology Committee(No.20ZR1431600)+7 种基金This research is also supported by the National Natural Science Foundation of China(No.11761161004)Z.L.acknowledge supports by the National Natural Science Foundation of China-Research Grants Council Joint Research Scheme(Nos.11761161004 and N_HKUST607/17)the IER foundation(No.HT-JD-CXY-201907)“International science and technology cooperation projects”of Science and Technological Bureau of Guangzhou Huangpu District(No.2019GH06)Guangdong Science and Technology Department(No.2020A0505090003)Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology(No.2020B1212030010)Technical assistance from the Materials Characterization and Preparation Facilities of The Hong Kong University Of Science And Technology is greatly appreciatedWe also acknowledge the support of Guangdong Provincial Key Laboratory Program(No.2021B1212040001)from the Department of Science and Technology of Guangdong Province.
文摘The functional recovery of peripheral nerve injury(PNI)is unsatisfactory,whereas diabetes mellitus(DM)and its related complications further attenuate the restoration of diabetic PNI(DPNI).Adipose-derived stem cells(ADSCs)are promising candidates for treatment of DPNI due to their abundant source,excellent differentiation and paracrine ability.Our results showed that ADSCs remarkably enhanced the proliferation and migration of Schwann cells and endothelial cells,and tube formation.Mechanistically,ADSCs could regulate Nrf2/HO-1,NF-κB and PI3K/AKT/mTOR signaling pathways,showing multiple functions in reducing oxidative stress and inflammation,and regulating cell metabolism,growth,survival,proliferation,angiogenesis,differentiation of Schwann cell and myelin formation.In current study,novel graphene foam(GF)/hydrogel-based scaffold was developed to deliver ADSCs for treatment of DPNI.GF/hydrogel scaffold exhibited excellent mechanical strength,suitable porous network,superior electrical conductivity,and good biocompatibility.In vitro results revealed that GF/hydrogel scaffold could obviously accelerate proliferation of Schwann cells.Moreover,in vivo experiments demonstrated that ADSCs-loaded GF/hydrogel scaffold significantly promoted the recovery of DPNI and inhibited the atrophy of targeted muscles,thus providing a novel and attractive therapeutic approach for DPNI patients.
基金R.H.and J.S.acknowledge support from the Army Research Office,Computing Sciences(W911NF-17-S-0002)and Dow Chemical CompanyWork at the Molecular Foundry was supported by the Office of Basic Energy Sciences,of the U.S.Department of Energy under Contract no.DE-AC02-05CH11231.
文摘Efforts to map atomic-scale chemistry at low doses with minimal noise using electron microscopes are fundamentally limited by inelastic interactions.Here,fused multi-modal electron microscopy offers high signal-to-noise ratio(SNR)recovery of material chemistry at nano-and atomic-resolution by coupling correlated information encoded within both elastic scattering(high-angle annular dark-field(HAADF))and inelastic spectroscopic signals(electron energy loss(EELS)or energy-dispersive x-ray(EDX)).By linking these simultaneously acquired signals,or modalities,the chemical distribution within nanomaterials can be imaged at significantly lower doses with existing detector hardware.In many cases,the dose requirements can be reduced by over one order of magnitude.This high SNR recovery of chemistry is tested against simulated and experimental atomic resolution data of heterogeneous nanomaterials.