The study of recent years found that big bulk amorphous alloys were formed for some multi-element compositions at rapid cooling speed such as Zr-, La-, Fe-, Mg-based alloys with wide undercooled liquid phase field and...The study of recent years found that big bulk amorphous alloys were formed for some multi-element compositions at rapid cooling speed such as Zr-, La-, Fe-, Mg-based alloys with wide undercooled liquid phase field and high trend of forming glass.( ATx = crystallization temperature Tx - glass transformation temperature Tg) Bulk amorphous copper mold upper suction casting with minus pressure while some new technical processes and adding new elements such as Co, Nb, Ca, etc.were used to improve magnetic properties and other performances of the materials.The results show that Fe-based bulk amorphous alloys have low coercive force and high permeability, which are successfully applied to magnetoelectric sensors with temperature ranges between -45 ℃ and 150 ℃ by special design of magnetic circuits.展开更多
The products of mixed rare earth minerals containing monazite and bastnaesite calcined by CaO-NaCl-CaCl2 contained calcium phosphate and phosphorite. In this paper, HCl-H3cit solution was used to wash the calcination ...The products of mixed rare earth minerals containing monazite and bastnaesite calcined by CaO-NaCl-CaCl2 contained calcium phosphate and phosphorite. In this paper, HCl-H3cit solution was used to wash the calcination products, and the kinetic character of dissolved phosphorus was studied. The results showed that the reaction rate control changed from chemical reaction control mode to mixed control mode and diffusion control mode with increasing temperature, and the activation energy were 7.36, 27.64 and 61.27 kJ·mol-1, respectively. The change of temperature, the reagent concentration and stirring speed were studied in order to increase the dissolution rate of phosphorus. Phosphorus and rare earth in the calcination products could be separated in this process applicable to the rare earth recovery in phosphorite containing the rare earth.展开更多
Loaded on the cordierite, the rare earth doped composite catalyst was prepared by sol-gel method combined with dipping technique. Taking Orthodichlorobenzene as model, the catalyst was used to remove the dioxins of th...Loaded on the cordierite, the rare earth doped composite catalyst was prepared by sol-gel method combined with dipping technique. Taking Orthodichlorobenzene as model, the catalyst was used to remove the dioxins of the waste gas. The results showed that at 280 ℃ and gas space velocity being 8000 h-1, the orthodichlorobenzene could be removed effectivily by the prepared CeO-TiO2-V2O5 composite catalyst whose activity was remarkably enhanced by the doping of Ce, while the industrial side-stream test of dioxins from refuse incineration smoke indicated that the decomposition rate could reach above 93% under the same conditions.展开更多
The La1 -xSrxMnO3 is the cathode materials of SOFC, which is the key part of SOFC.The production technology of La1 -xSrxMnO3 materials is widely studied with efficiency, saving energy and environment friend.Microwave ...The La1 -xSrxMnO3 is the cathode materials of SOFC, which is the key part of SOFC.The production technology of La1 -xSrxMnO3 materials is widely studied with efficiency, saving energy and environment friend.Microwave synthesis was used to produce La1 -xSrxMnO3.The kinetics course of synthesizing La1-xSrxMnO3 materials by microwave technology was discussed.Using DTA-TGA and XRD analysis, the process and principle of solid reaction were examined.The results show that the reaction time and grain size of raw materials are important factor.When reaction time increases from 4 to 15 min, the crystal structure of La1 -xSrxMnO3 formes gradually.Through analysis of kinetics model, the reaction principle of La1-xSrxMnO3 was gained by microwave synthesis and the kinetics equation was built.展开更多
文摘The study of recent years found that big bulk amorphous alloys were formed for some multi-element compositions at rapid cooling speed such as Zr-, La-, Fe-, Mg-based alloys with wide undercooled liquid phase field and high trend of forming glass.( ATx = crystallization temperature Tx - glass transformation temperature Tg) Bulk amorphous copper mold upper suction casting with minus pressure while some new technical processes and adding new elements such as Co, Nb, Ca, etc.were used to improve magnetic properties and other performances of the materials.The results show that Fe-based bulk amorphous alloys have low coercive force and high permeability, which are successfully applied to magnetoelectric sensors with temperature ranges between -45 ℃ and 150 ℃ by special design of magnetic circuits.
基金the National Natural Science Foundation of China (50574031)
文摘The products of mixed rare earth minerals containing monazite and bastnaesite calcined by CaO-NaCl-CaCl2 contained calcium phosphate and phosphorite. In this paper, HCl-H3cit solution was used to wash the calcination products, and the kinetic character of dissolved phosphorus was studied. The results showed that the reaction rate control changed from chemical reaction control mode to mixed control mode and diffusion control mode with increasing temperature, and the activation energy were 7.36, 27.64 and 61.27 kJ·mol-1, respectively. The change of temperature, the reagent concentration and stirring speed were studied in order to increase the dissolution rate of phosphorus. Phosphorus and rare earth in the calcination products could be separated in this process applicable to the rare earth recovery in phosphorite containing the rare earth.
基金the National Natural Science Foundation of China (50104003)
文摘Loaded on the cordierite, the rare earth doped composite catalyst was prepared by sol-gel method combined with dipping technique. Taking Orthodichlorobenzene as model, the catalyst was used to remove the dioxins of the waste gas. The results showed that at 280 ℃ and gas space velocity being 8000 h-1, the orthodichlorobenzene could be removed effectivily by the prepared CeO-TiO2-V2O5 composite catalyst whose activity was remarkably enhanced by the doping of Ce, while the industrial side-stream test of dioxins from refuse incineration smoke indicated that the decomposition rate could reach above 93% under the same conditions.
基金Project supported by the National Natural Science Foundation of China (50174016)
文摘The La1 -xSrxMnO3 is the cathode materials of SOFC, which is the key part of SOFC.The production technology of La1 -xSrxMnO3 materials is widely studied with efficiency, saving energy and environment friend.Microwave synthesis was used to produce La1 -xSrxMnO3.The kinetics course of synthesizing La1-xSrxMnO3 materials by microwave technology was discussed.Using DTA-TGA and XRD analysis, the process and principle of solid reaction were examined.The results show that the reaction time and grain size of raw materials are important factor.When reaction time increases from 4 to 15 min, the crystal structure of La1 -xSrxMnO3 formes gradually.Through analysis of kinetics model, the reaction principle of La1-xSrxMnO3 was gained by microwave synthesis and the kinetics equation was built.