期刊文献+
共找到16,073篇文章
< 1 2 250 >
每页显示 20 50 100
Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries:Mechanisms,Strategies,and Prospects
1
作者 Guan Wang Guixin Wang +2 位作者 Linfeng Fei Lina Zhao Haitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期169-195,共27页
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut... The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance. 展开更多
关键词 Low-temperature performance Anode materials Microstructural regulations Surface modifications
下载PDF
Integrated Practice of Cultivating Innovative Ability and Ideological Education for Graduate Students of Materials Science Major
2
作者 Junjie Ni Yan Li 《Journal of Contemporary Educational Research》 2024年第5期247-253,共7页
Aiming at the problem of weak integration of innovation ability and ideological education of postgraduates in materials major,this paper explores postgraduates’cultivation work under the support of Liaocheng Universi... Aiming at the problem of weak integration of innovation ability and ideological education of postgraduates in materials major,this paper explores postgraduates’cultivation work under the support of Liaocheng University.It is found that the cultivation of the innovation ability of postgraduates in materials can be the realization path and sublimation carrier of ideological education,ideological education can provide spiritual support and methodological guidance for the former,and the organic integration of the two is feasible.Constructing the fit relationship between innovation ability and ideological education,institutionalizing tutor guidance,establishing tutor+counselor+professional teacher communication mechanism,and taking disciplinary competitions as a handhold can achieve the integration of innovation ability cultivation and ideological education of graduate students in materials major. 展开更多
关键词 Postgraduate education Innovation ability Ideological education Materials major
下载PDF
Vanadium oxide nanospheres encapsulated in N-doped carbon nanofibers with morphology and defect dual-engineering toward advanced aqueous zinc-ion batteries
3
作者 Yunfei Song Laiying Jing +3 位作者 Rutian Wang Jiaxi Cui Mei Li Yunqiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期599-609,I0013,共12页
Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high ... Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high electrochemical performance owing to the limited electronic conductivity,sluggish ion kinetics,and severe volume expansion during the insertion/extraction process of Zn^(2+).Herein,a series of V_(2)O_(3)nanospheres embedded N-doped carbon nanofiber structures with various V_(2)O_(3)spherical morphologies(solid,core-shell,hollow)have been designed for the first time by an electrospinning technique followed thermal treatments.The N-doped carbon nanofibers not only improve the electrical conductivity and the structural stability,but also provides encapsulating shells to prevent the vanadium dissolution and aggregation of V_(2)O_(3)particles.Furthermore,the varied morphological structures of V_(2)O_(3)with abundant oxygen vacancies can alleviate the volume change and increase the Zn^(2+)pathway.Besides,the phase transition between V_(2)O_(3)and Zn_XV_(2)O_(5-m)·n H_(2)O in the cycling was also certified.As a result,the as-obtained composite delivers excellent long-term cycle stability and enhanced rate performance for coin cells,which is also confirmed through density functional theory(DFT)calculations.Even assembled into flexible ZIBs,the sample still exhibits superior electrochemical performance,which may afford new design concept for flexible cathode materials of ZIBs. 展开更多
关键词 Aqueous zinc ion batteries Vanadium trioxide Oxygen vacancy Structure evolution Phase optimization
下载PDF
High-efficiency sodium storage of Co_(0.85)Se/WSe_(2) encapsulated in N-doped carbon polyhedron via vacancy and heterojunction engineering
4
作者 Ya Ru Pei Hong Yu Zhou +5 位作者 Ming Zhao Jian Chen Li Xin Ge Wei Zhang Chun Cheng Yang Qing Jiang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期94-107,共14页
With the advantage of fast charge transfer,heterojunction engineering is identified as a viable method to reinforce the anodes'sodium storage performance.Also,vacancies can effectively strengthen the Na+adsorption... With the advantage of fast charge transfer,heterojunction engineering is identified as a viable method to reinforce the anodes'sodium storage performance.Also,vacancies can effectively strengthen the Na+adsorption ability and provide extra active sites for Na+adsorption.However,their synchronous engineering is rarely reported.Herein,a hybrid of Co_(0.85)Se/WSe_(2) heterostructure with Se vacancies and N-doped carbon polyhedron(CoWSe/NCP)has been fabricated for the first time via a hydrothermal and subsequent selenization strategy.Spherical aberration-corrected transmission electron microscopy confirms the phase interface of the Co_(0.85)Se/WSe_(2) heterostructure and the existence of Se vacancies.Density functional theory simulations reveal the accelerated charge transfer and enhanced Na+adsorption ability,which are contributed by the Co_(0.85)Se/WSe_(2) heterostructure and Se vacancies,respectively.As expected,the CoWSe/NCP anode in sodium-ion battery achieves outstanding rate capability(339.6 mAh g^(−1) at 20 A g^(−1)),outperforming almost all Co/W-based selenides. 展开更多
关键词 Co_(0.85)Se/WSe_(2)heterostructure density functional theory simulations N-doped carbon polyhedron Se vacancies sodium-ion batteries
下载PDF
Application of machine learning in perovskite materials and devices:A review
5
作者 Ming Chen Zhenhua Yin +6 位作者 Zhicheng Shan Xiaokai Zheng Lei Liu Zhonghua Dai Jun Zhang Shengzhong(Frank)Liu Zhuo Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期254-272,共19页
Metal-halide hybrid perovskite materials are excellent candidates for solar cells and photoelectric devices.In recent years,machine learning(ML)techniques have developed rapidly in many fields and provided ideas for m... Metal-halide hybrid perovskite materials are excellent candidates for solar cells and photoelectric devices.In recent years,machine learning(ML)techniques have developed rapidly in many fields and provided ideas for material discovery and design.ML can be applied to discover new materials quickly and effectively,with significant savings in resources and time compared with traditional experiments and density functional theory(DFT)calculations.In this review,we present the application of ML in per-ovskites and briefly review the recent works in the field of ML-assisted perovskite design.Firstly,the advantages of perovskites in solar cells and the merits of ML applied to perovskites are discussed.Secondly,the workflow of ML in perovskite design and some basic ML algorithms are introduced.Thirdly,the applications of ML in predicting various properties of perovskite materials and devices are reviewed.Finally,we propose some prospects for the future development of this field.The rapid devel-opment of ML technology will largely promote the process of materials science,and ML will become an increasingly popular method for predicting the target properties of materials and devices. 展开更多
关键词 Machine learning PEROVSKITE Materials design Bandgap engineering Stability Crystal structure
下载PDF
Self-derivation and reconstruction of silver nanoparticle reinforced cobalt-nickel bimetallic hydroxides through interface engineering for overall water splitting
6
作者 Yan Li Jie Han +5 位作者 Weiwei Bao Junjun Zhang Taotao Ai Mameng Yang Chunming Yang Pengfei Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期590-599,I0013,共11页
Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen e... Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition. 展开更多
关键词 Surface reconstruction Bimetallic hydroxides Ag nanoparticle Operando Raman Overall water splitting
下载PDF
The design and engineering strategies of metal tellurides for advanced metal-ion batteries
7
作者 Wenmiao Zhao Xiaoyuan Shi +3 位作者 Bo Liu Hiroshi Ueno Ting Deng Weitao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期579-598,I0013,共21页
Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite ne... Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite new,fundamental issues raise regarding the energy storage mechanism and other aspects affecting electrochemical performance.Severe volume expansion,low intrinsic conductivity and slow ion diffusion kinetics jeopardize the performance of metal tellurides,so that rational design and engineering are crucial to circumvent these disadvantages.Herein,this review provides an in-depth discussion of recent investigations and progresses of metal tellurides,beginning with a critical discussion on the energy storage mechanisms of metal tellurides in various MBs.In the following,recent design and engineering strategies of metal tellurides,including morphology engineering,compositing,defect engineering and heterostructure construction,for high-performance MBs are summarized.The primary focus is to present a comprehensive understanding of the structural evolution based on the mechanism and corresponding effects of dimension control,composition,electron configuration and structural complexity on the electrochemical performance.In closing,outlooks and prospects for future development of metal tellurides are proposed.This work also highlights the promising directions of design and engineering strategies of metal tellurides with high performance and low cost. 展开更多
关键词 Metal tellurides Metal-ion battery Energy storage mechanism Material design and engineering
下载PDF
Current and further trajectories in designing functional materials for solid oxide electrochemical cells:A review of other reviews
8
作者 Stanislav Baratov Elena Filonova +6 位作者 Anastasiya Ivanova Muhammad Bilal Hanif Muneeb Irshad Muhammad Zubair Khan Martin Motola Sajid Rauf Dmitry Medvedev 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期302-331,共30页
Complex oxides are an important class of materials with enormous potential for electrochemical appli-cations.Depending on their composition and structure,such complex oxides can exhibit either a single conductivity(ox... Complex oxides are an important class of materials with enormous potential for electrochemical appli-cations.Depending on their composition and structure,such complex oxides can exhibit either a single conductivity(oxygen-ionic or protonic,or n-type,or p-type electronic)or a combination thereof gener-ating distinct dual-conducting or even triple-conducting materials.These properties enable their use as diverse functional materials for solid oxide fuel cells,solid oxide electrolysis cells,permeable membranes,and gas sensors.The literature review shows that the field of solid oxide materials and related electro-chemical cells has a significant level of research engagement,with over 8,000 publications published since 2020.The manual analysis of such a large volume of material is challenging.However,by examining the review articles,it is possible to identify key patterns,recent achievements,prospects,and remaining obstacles.To perform such an analysis,the present article provides,for the first time,a comprehensive summary of previous review publications that have been published since 2020,with a special focus on solid oxide materials and electrochemical systems.Thus,this study provides an important reference for researchers specializing in the fields of solid state ionics,high-temperature electrochemistry,and energyconversiontechnologies. 展开更多
关键词 SOFCS SOECs PCFCS ELECTROCHEMISTRY Energy conversion Hydrogen energy Carbon neutrality
下载PDF
Preparation and Performance Study of Cementitious Capillary Crystalline Waterproof Materials
9
作者 Hui Li Yu Liu Gaoshang Zhang 《Journal of Architectural Research and Development》 2024年第3期42-52,共11页
Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the pro... Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the proportioning of such materials.However,these studies lack the relationship between the impermeability pressure of mortar and the components,and the mechanism of action is somewhat debatable.Therefore,we adopted a two-step method in our experiments.Firstly,we screened out the components that significantly impact impermeability from a variety of active components by orthogonal test.We then optimized the design of the active group ratio using the simplex lattice method.Lastly,we conducted a performance test of the optimal ratio and explored the waterproofing mechanism of homemade CCCW. 展开更多
关键词 Cementitious penetration crystalline waterproof material IMPERMEABILITY Mechanism analysis Optimization design
下载PDF
Development of Integrated Computational Materials Engineering(ICME)Model for Mg Alloy Design and Process Optimization
10
作者 Hui Su Zhifei Yan +8 位作者 Yingchun Tian Chengpeng Xue Shuo Wang Guangyuan Tian Xinghai Yang Quan Li Xuelong Wu Zhongyao Li Junsheng Wang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第4期422-442,共21页
Integrated computational materials engineering(ICME)has emerged to be one of the most powerful materials genome engineering(MGE)approaches in designing new materials and manufacturing processes in recent years.It has ... Integrated computational materials engineering(ICME)has emerged to be one of the most powerful materials genome engineering(MGE)approaches in designing new materials and manufacturing processes in recent years.It has successfully deployed many new products for the electronic,automotive,and aerospace industries.This paper reviews the current status of research on first principles in the design of high-strength Mg alloys,discusses the application of crystal plasticity finite element models to the microscale slip,twinning,microstructure morphology,texture evolution,and macroscopic forming of Mg alloys,and introduces the research progress of crystal plasticity finite element models and phase field models,meta cellular automata models and first principles coupled models respectively,around the need for multi-scale coupled simulations of Mg alloys.The key technology obstacles of integrating the first principles,crystal plasticity finite element,and microstructure models for Mg alloys have been solved.This paper can provide a reference for the design of new Mg alloy compositions and the development of high-performance Mg alloys. 展开更多
关键词 FIRST-PRINCIPLES crystal plasticity finite elements MICROSTRUCTURE Mg alloys
下载PDF
Integrated Computational Materials Engineering for the Development and Design of High Modulus Al Alloys
11
作者 Chengpeng Xue Xinghai Yang +1 位作者 Shuo Wang Junsheng Wang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第4期443-462,共20页
Integrated computational materials engineering(ICME)is to integrate multi-scale computational simulations and key experimental methods such as macroscopic,mesoscopic,and microscopic into the whole process of Al alloys... Integrated computational materials engineering(ICME)is to integrate multi-scale computational simulations and key experimental methods such as macroscopic,mesoscopic,and microscopic into the whole process of Al alloys design and development,which enables the design and development of Al alloys to upgrade from traditional empirical to the integration of compositionprocess-structure-mechanical property,thus greatly accelerating its development speed and reducing its development cost.This study combines calculation of phase diagram(CALPHAD),Finite element calculations,first principle calculations,and microstructure characterization methods to predict and regulate the formation and structure of composite precipitates from the design of highmodulus Al alloy compositions and optimize the casting process parameters to inhibit the formation of micropore defects in the casting process,and the final tensile strength of Al alloys reaches420 MPa and Young's modulus reaches more than 88 GPa,which achieves the design goal of the high strength and modulus Al alloys,and establishes a new mode of the design and development of the strength/modulus Al alloys. 展开更多
关键词 integrated computational materials engineering(ICME) high modulus Al alloys
下载PDF
Model reduction of fractional impedance spectra for time–frequency analysis of batteries, fuel cells, and supercapacitors 被引量:1
12
作者 Weiheng Li Qiu-An Huang +6 位作者 Yuxuan Bai Jia Wang Linlin Wang Yuyu Liu Yufeng Zhao Xifei Li Jiujun Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期108-141,共34页
Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlatio... Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices. 展开更多
关键词 battery fuel cell supercapacitor fractional impedance spectroscopy model reduction time-frequency analysis
下载PDF
The growth ofβphase in Mg-Gd-Y-Ni alloy by experimental and first-principles study
13
作者 Yiqiang Hao Lei Zhou +2 位作者 Zhiqing Chen Zhixian Zhao Bin Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期506-515,共10页
The paper reports on the atomic investigation aboutβphase in Mg_(96)Gd_(2)Y_(1)Ni_(1) alloy by using the first-principles study and the high-angle annular dark-field scanning transmission electron microscope(HAADF-ST... The paper reports on the atomic investigation aboutβphase in Mg_(96)Gd_(2)Y_(1)Ni_(1) alloy by using the first-principles study and the high-angle annular dark-field scanning transmission electron microscope(HAADF-STEM)corrected by atomic Cs.By using HAADF-STEM,the rectangularβphases were observed in the underage and peak aging stages in Mg_(96)Gd_(2)Y_(1)Ni_(1) alloy.Theβphase could be precipitated from the previously precipitatedβphase,and theβphase grew in steps when it was precipitated.A special transition structure of three atomic layer thicknesses was first observed at the edge of theβphase and the structure of this interface is probably as theβ/Mg_(1) interface for the analysis of thermodynamic characterization and electronic characterization.Theβ'phase and theβ_(H) structure were precipitated only at the edge of the length directions of theβphase.Theβ'phase continues to grow into aβphase directly without the formation ofβ_(1) phase,resulting in an increase in the length of theβphase,which is discovered for the first time. 展开更多
关键词 HAADF-STEM First-principles study Mg-Gd-Y-Ni alloy βphase GROWTH INTERFACE
下载PDF
Evolution of Biofilm and Its Effect on Microstructure of Mortar Surfaces in Simulated Seawater
14
作者 荣辉 YU Chenglong 张颖 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期234-243,共10页
To explore the role of biofilm formation on the corrosion of marine concrete structures, we investigated the attachment of biofilm on mortar surfaces in simulated seawater and the influence of biofilm on the microstru... To explore the role of biofilm formation on the corrosion of marine concrete structures, we investigated the attachment of biofilm on mortar surfaces in simulated seawater and the influence of biofilm on the microstructure of mortar surfaces. The results show that the evolution of biofilm on mortar surfaces in simulated seawater is closely related to the corrosion suffered by the mortar, and the process of biofilm attachment and shedding is continuous and cyclical. It is found that the specimens in the absence of biofilm attachment are more severely eroded internally by the corrosive medium in simulated seawater than those in the presence of biofilm attachment. For the specimens without biofilm attachment, after 60 days, gypsum forms,and after 120 days, the number of pores in the mortar is reduced. In contrast, for the specimens in the presence of biofilm attachment, gypsum could only be detected after 90 days, and fewer pores are filled. Therefore, the formation of biofilm could delay the invasion of the corrosive medium into the interior of mortar during the evolution of biofilm on mortar surfaces, mitigating the corrosion of mortars in seawater. 展开更多
关键词 biofilm attachment MORTAR sulfur-oxidizing bacteria GYPSUM simulated seawater MICROSTRUCTURE
下载PDF
Development in oxide metallurgy for improving the weldability of high -strength low-alloy steel-Combined deoxidizers and microalloying elements
15
作者 Tingting Li Jian Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1263-1284,共22页
The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles du... The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy. 展开更多
关键词 oxide metallurgy technology heat affected zone high-strength low-alloy steel intragranular acicular ferrite microalloying element
下载PDF
Magnetic and magnetocaloric effect of Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass
16
作者 于世霖 田路 +4 位作者 王俊峰 赵新国 李达 莫兆军 李昺 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期602-606,共5页
Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_... Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass was observed with typical spin glass behavior around 15.5 K.In addition,we find that the magnetic entropy change(-△S_(M))originates from the sample undergoing a ferromagnetic(FM)to paramagnetic(PM)transition around 20 K.Under a field change from 0 T to 7 T,the value of maximum magnetic entropy change(-△S_(M)^(max))reaches 12.5 J/kg·K,and the corresponding value of RC reaches 487.7 J/kg in the temperature range from 6 K to 60 K.The large RC and wide temperature range make the Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass be a promising material for application in magnetic refrigerators. 展开更多
关键词 magnetic materials magnetocaloric effect high-entropy metallic glass magnetic refrigeration large refrigeration capacity
下载PDF
Toward high-sulfur-content,high-performance lithium-sulfur batteries:Review of materials and technologies 被引量:5
17
作者 Fulai Zhao Jinhong Xue +3 位作者 Wei Shao Hui Yu Wei Huang Jian Xiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期625-657,I0014,共34页
Lithium sulfur batteries(LSBs)are recognized as promising devices for developing next-generation energy storage systems.In addition,they are attractive rechargeable battery systems for replacing lithium-ion batteries(... Lithium sulfur batteries(LSBs)are recognized as promising devices for developing next-generation energy storage systems.In addition,they are attractive rechargeable battery systems for replacing lithium-ion batteries(LIBs)for commercial use owing to their higher theoretical energy density and lower cost compared to those of LIBs.However,LSBs are still beset with some persistent issues that prevent them from being used industrially,such as the unavoidable dissolution of lithium polysulfide intermediates during electrochemical reactions and large volume expansion(up to 80%)upon the formation of Li_(2)S,resulting in serious battery life and safety limitations.In the process of solving these problems,it is necessary to maintain a high sulfur content in the cathode materials to ensure that the LSBs have high energy densities and excellent cycle performance.In this review,the novel preparation methods and cathode materials used for preparing LSBs in recent years are reviewed considering the sulfur content and cycle performance.In addition,the problems and difficulties in practically applying cathode materials are described,and the development trend is discussed. 展开更多
关键词 Lithium sulfur batteries Cathode material High sulfur content Cycle performance
下载PDF
Rational design of F,N-rich artificial interphase via chemical prelithiation initiation strategy enabling high coulombic efficiency and stable micro-sized SiO anodes
18
作者 Quanyan Man Hengtao Shen +3 位作者 Chuanliang Wei Baojuan Xi Shenglin Xiong Jinkui Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期224-232,共9页
Silicon monoxide(SiO)is regarded as a potential candidate for anode materials of lithium-ion batteries(LIBs).Unfortunately,the application of SiO is limited by poor initial Coulombic efficiency(ICE)and unsteady solid ... Silicon monoxide(SiO)is regarded as a potential candidate for anode materials of lithium-ion batteries(LIBs).Unfortunately,the application of SiO is limited by poor initial Coulombic efficiency(ICE)and unsteady solid electrolyte interface(SEI),which induce low energy,short cycling life,and poor rate properties.To address these drawbacks of SiO,we achieve in-situ construction of robust and fast-ion conducting F,N-rich SEI layer on prelithiated micro-sized SiO(P-μSiO)via the simple and continuous treatment ofμSiO in mild lithium 4,4′-dimethylbiphenyl solution and nonflammable hexafluorocyclotriphosphazene solution.Chemical prelithiation eliminates irreversible capacity through pre-forming inactive lithium silicates.Meanwhile,the symbiotic F,N-rich SEI with good mechanical stability and fast Li^(+)permeability is conductive to relieve volume expansion ofμSiO and boost the Li+diffusion kinetics.Consequently,the P-μSiO realizes an impressive electrochemical performance with an elevated ICE of 99.57%and a capacity retention of 90.67%after 350 cycles.Additionally,the full cell with P-μSiO anode and commercial LiFePO_(4) cathode displays an ICE of 92.03%and a high reversible capacity of 144.97 mA h g^(-1).This work offers a general construction strategy of robust and ionically conductive SEI for advanced LIBs. 展开更多
关键词 Chemical prelithiation Silicon monoxide SEI Lithium-ion batteries INTERPHASE engineering
下载PDF
Simple preparation of C(CS)/g-C_(3)N_(4)/Co carbon aerogel and its catalytic performance for ammonium perchlorate
19
作者 Yujie Yan Bo Jin Rufang Peng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期186-196,共11页
Biomass chitosan(CS)was used as a template,graphitic phase carbon nitride(g-C_(3)N_(4))with high nitrogen content and certain catalytic activity was used as a dopant,and nano-transition metal cobalt(Co)was used as a c... Biomass chitosan(CS)was used as a template,graphitic phase carbon nitride(g-C_(3)N_(4))with high nitrogen content and certain catalytic activity was used as a dopant,and nano-transition metal cobalt(Co)was used as a catalytic center point.The carbon aerogel(C(CS)/g-C_(3)N_(4)/Co)with a three-dimensional network-like structure was prepared by assembling the three materials through experimental operations such as freeze-drying and high-temperature carbonization.It was demonstrated by scanning and transmission characterization that the CS in the carbon aerogel could provide more active sites for the cobalt nanoparticles,and the doping of graphite-phase carbon nitride as a template dispersed the cobalt nanoparticles and changed the conductivity of the CS.To investigate the catalytic effect of carbon aerogel on ammonium perchlorate(AP),it was investigated by differential thermal analyzer and TG thermal analysis.This carbon aerogel was very effective in catalyzing AP,and the 10 wt% content of the catalyst reduced the AP pyrolysis peak from 703.9 to 595.5 K.And to further investigate the synergistic effect of the three materials,further carbon aerogels such as C(CS)/Co,g-C_(3)N_(4)/Co were prepared and applied to catalyze AP,and the same ratio reduced the AP pyrolysis peak by 98.1℃ and 97.7℃.This result indicates a synergistic effect of the assembly of the three materials. 展开更多
关键词 g-C_(3)N_(4) CHITOSAN CO Ammonium perchlorate Pyrolysis kinetics
下载PDF
Resistive switching behavior and mechanism of HfO_(x) films with large on/off ratio by structure design
20
作者 黄香林 王英 +2 位作者 黄慧香 段理 郭婷婷 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期660-665,共6页
Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ra... Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure. 展开更多
关键词 HfO_(x)film resistive switching structure design interface modulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部