The origin of unique parallel alignment of(0001) poles to transverse direction(TD) was investigated using Mg-3Al-0.4Mn(mass%)alloy sheets rolled with different process conditions. When rolling was performed with inter...The origin of unique parallel alignment of(0001) poles to transverse direction(TD) was investigated using Mg-3Al-0.4Mn(mass%)alloy sheets rolled with different process conditions. When rolling was performed with intermediate reheating, the alloy showed a sluggish static recrystallization(SRX) behavior during post-annealing, facilitating the nucleation and growth of statically recrystallized grains from extension twins. This resulted in the apparent texture component with the parallel alignment of the(0001) poles to the TD, and the sheet exhibited good ductility for both the rolling direction(RD) and TD. In contrast, continuous rolling without intermediate reheating led to the formation of severely deformed regions near double twins. SRX was promoted at such regions, forming a typical basal textural feature with weak RD-split of the(0001) poles. Although extension twins were formed after the continuous rolling, SRX was facilitated at the severely deformed regions with double twins, and the formation of the unique alignment of the(0001) poles to the TD was suppressed. The RD-split texture led to the large elongation to failure along the RD, while it along the TD decreased owing to the narrow distribution of the(0001)poles toward the TD, resulting in the in-plane anisotropy in ductility.展开更多
Strength and ductility synergy in an Mg-3mass%Al-Mn(AM30)alloy sheet was successfully improved via twin-roll casting and annealing at low-temperature.An AM30 alloy sheet produced by twin-roll casting,homogenization,ho...Strength and ductility synergy in an Mg-3mass%Al-Mn(AM30)alloy sheet was successfully improved via twin-roll casting and annealing at low-temperature.An AM30 alloy sheet produced by twin-roll casting,homogenization,hot-rolling,and subsequent annealing at 170℃ for 64 h exhibits a good 0.2%proof stress of 170 MPa and a large elongation to failure of 33.1%along the rolling direction.The sheet also shows in-plane isotropic tensile properties,and the 0.2%proof stress and elongation to failure along the transverse direction are 176 MPa and 35.5%,respectively.Though the sheet produced by direct-chill casting also shows moderate strengths if the annealing condition is same,the direct-chill casting leads to the deteriorated elongation to failure of 23.9%and 30.0%for the rolling and transverse directions,respectively.As well as such excellent tensile properties,a high room-temperature stretch formability with an Index Erichsen value of 8.3 mm could be obtained in the twin-roll cast sheet annealed at 170℃ for 64 h.The annealing at a higher temperature further improves the stretch formability;however,this results in the decrease of the tensile properties.Microstructure characterization reveals that the excellent combination of strengths,ductility,and stretch formability in the twin-roll cast sheet annealed at the low-temperature annealing is mainly attributed to the uniform recrystallized microstructure,fine grain size,and circular distribution of(0001)poles away from the normal direction of the sheet.展开更多
3-nitro-1,2,4-triazol-5-one(NTO)is the main component of insensitive munitions(IM)formulation because of its outstanding insensitive properties.In this paper,a series of NTO/HMX-based compositeexplosives were prepared...3-nitro-1,2,4-triazol-5-one(NTO)is the main component of insensitive munitions(IM)formulation because of its outstanding insensitive properties.In this paper,a series of NTO/HMX-based compositeexplosives were prepared and characterized.The study focuses on the effect of NTO on the perfommance of the formulations,especially the safety performance.The results revealed that the mechanical sensi-tivity of fomulations was associated with NTO content,as well as the thermal conductivity,specific heat capacity and Arrhenius parameters.Then,the high amount of NTO using in formulation was proved to be helpful for NTO/HMX-based formulation to exhibit good thermal safety.Besides,by accelerating rate calorimeter(ARC)and a modified cook-off equipment,the pressure and pressure rise rate were proved as the important indicator for judging the thermal safety performance in confined spaces.Finally,the numerical simulation was used as a credible method for predicting the respond temperature of cook-off experiment.展开更多
The closed die forging(or fully-enclosed die forging) method was employed to form a rotor instead of the conventional machining method. A combined female die was designed so that the rotor could be released easily fro...The closed die forging(or fully-enclosed die forging) method was employed to form a rotor instead of the conventional machining method. A combined female die was designed so that the rotor could be released easily from the female die after forging. In order to improve the metal flow ability, the isothermal forming technique was introduced to the closed die forging process. On the basis of the rigid-viscoplastic FEM principle, the DEFORM 3D software package was employed to simulate the forming process. The simulation results illustrate that the deformation of different part of the billet is not the same. The material near the entrance of the die cavity is deformed greatly whose strain rate and strain are both large, while the deformation of the material at the billet center is much smaller.展开更多
Tetraacetyldibenzylhexaazaisowurtzitane (TADBIW) was subjected to debenzylation by nitrosating with inorganic materials available commercially to synthesize tetraacetyldinitrosohexaazaisowurtzitane (TADNSIW). TADNSIW ...Tetraacetyldibenzylhexaazaisowurtzitane (TADBIW) was subjected to debenzylation by nitrosating with inorganic materials available commercially to synthesize tetraacetyldinitrosohexaazaisowurtzitane (TADNSIW). TADNSIW was purified, and its structure was determined by FTIR, 1H NMR, MS and element analysis. The debenzylation reaction of TADBIW gave quantitative benzaldehyde as a by-product. This indicates that the reaction produces an imine cation as an intermediate. Hexanitrohexaazaisowurtzitane (HNIW) was prepared from unpurified TADNSIW with the yield over 96.0 % and the purity more than 98.0 %. And the mechanism of the reaction from TADNSIW to HNIW is proposed to be oxidation of nitroso and nitration of acetyl on the molecule of TADNSIW. This reaction system involved is simple, and the reaction can complete within a short time and under mild conditions. The product can be easily to separate and the waste disposed readily.展开更多
TiB2P/Al composite was successfully fabricated by squeeze casting technology.Its mechanical and tribological properties were evaluated .The elimination of Ti-Al intermetallic compound was confirmed by X-ray diffracti...TiB2P/Al composite was successfully fabricated by squeeze casting technology.Its mechanical and tribological properties were evaluated .The elimination of Ti-Al intermetallic compound was confirmed by X-ray diffraction (XRD)studies.At 45% volume fraction ,the bending strength at ambient temperature was 934 MPa.And the fracture modes included ductile failure of Al matrix and brittle fracture of TiB2 pqrticles.In dry sliding wear mode ,severe plastic deformation and adhesive wear were found on te worn surfaces of the SiCP/Al composite .But no obvious characteristics of adhesion or abrasion wear were observed on that of the TiB2P/Al composites .At the stedady stage ,the friction coefficient of the SiCP/Al composite was about 0.6 .While that of TiB2P/Al composite was only only about 0.16-0.17.展开更多
Three-dimensional (3-D)self-assembly of nanos- tructures and nanodevices on a large scale remains a grand quest for mankind.Freestanding nanostructured assemblies with controlled 3-D shapes can exhibit attractive prop...Three-dimensional (3-D)self-assembly of nanos- tructures and nanodevices on a large scale remains a grand quest for mankind.Freestanding nanostructured assemblies with controlled 3-D shapes can exhibit attractive properties for sensor and other applications. Protocols for 3-D self-assembly that can be scaled up for mass production on a large up to tonnage)scale, while preserving morphological features on a small (down to nanometer)scale,are needed to allow for widespread use of 3-D nanostructures in advanced devices.However,these often conflicting requirements of scalability and precision pose a difficult challenge for synthetic (man-made)processing routes.展开更多
Ferroelectric materials are widely used in the applications of electronic devices due to their robust spontaneous polarization.The surface roughness of ferroelectric thin films,which is closely related to the morpholo...Ferroelectric materials are widely used in the applications of electronic devices due to their robust spontaneous polarization.The surface roughness of ferroelectric thin films,which is closely related to the morphology,can play an important role in determining the ferroelectric domain structures.In this work,we have investigated the influence of annealing conditions on the surface morphology of epitaxial BiFeO_(3)and SrRuO_(3)thin films prepared by pulsed laser deposition on SrTiO_(3)(001)substrates.It is found that the morphology of the thin films is sensitive to the annealing time and cooling rate,and the corresponding surface roughness decreases with increasing annealing time and decreasing cooling rate.In addition,the ferroelectric domain structures of BiFeO_(3)films have been investigated by piezoelectric force microscopy,which shows a significant improvement in domain size and reverse piezoelectric response in the thin films with decreasing surface roughness.This work provides a simple way to predict and improve the ferroelectric domain structures by in situ annealing.展开更多
Mechanically activated disproportionation of Nd 12 Fe 82 B 6 alloy by ball milling in hydrogen atmosphere was experimentally investigated. The aspects of thermodynamics and kinetics for the mechanically activated disp...Mechanically activated disproportionation of Nd 12 Fe 82 B 6 alloy by ball milling in hydrogen atmosphere was experimentally investigated. The aspects of thermodynamics and kinetics for the mechanically activated disproportionation of the NdFeB alloy were discussed. Both the evolution of the disproportionation reaction and the corresponding microstructure change of the alloy during milling were characterized by X ray diffraction (XRD) analysis. The results show that the matrix phase Nd 2Fe 14 B of the as cast Nd 12 Fe 82 B 6 alloy can be disproportionated into a mixture of Nd hydride (H 5Nd 2), FeB/Fe 2B, and α Fe, by ball milling under hydrogen pressure of 0.2 MPa. The as disproportionated phases are of the size about 20 nm, suggesting that ball milling in hydrogen is an effective route for low temperature disproportionation processing of the NdFeB alloy to ensure a full nano structured as disproportionated microstructure. This is the basis for synthesizing Nd 2Fe 14 B/ α Fe nano composites with magnetic exchange coupling effect by subsequent desorption recombination processing.展开更多
Mortar prisms were made with three different cementitious materials (with or without mineral admixture) plus 30% mass of limestone filler. After 28 days of curing in water at room temperature, the mortars were submerg...Mortar prisms were made with three different cementitious materials (with or without mineral admixture) plus 30% mass of limestone filler. After 28 days of curing in water at room temperature, the mortars were submerged in 2% magnesium sulfate solution at different temperatures (5℃, 20℃and alternate temperature between 5℃and 20℃) for a year. The appearance and strength development were measured on these immersed prisms at intervals, and samples selected from the surface of prisms were examined by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results show that the influence of temperature on the resistance to sulfate attack of mortar is related to the binder compositions. A higher temperature leads to a quicker strength loss and appearance deterioration of the mortar without mineral admixture. For blended cements, a higher temperature is favorable for the pozzolanic reaction of mineral admixture and the overall deterioration of mortar is reduced with the increasing temperature. When the mineral admixture has a lower reactivity, such influence of temperature on the resistance to sulfate attack of mortar containing admixtures becomes greater. At the three different solution temperatures, two blended cements show significantly improved resistances to sulfate attack. After 1 year of exposure to magnesium sulfate solutions, the formation of thaumasite was checked in the OPC mortars at both 5℃and 20℃. It is concluded that the thaumasite formation is not limited to structures at low temperature (less than 15℃).展开更多
The ZrO 2 (2Y)/TRIP steel composites were prepared by vacuum hot pressing sintering. The room temperature static tensile and dynamic yield strength were tested using the static tensile and Split Hopkinson Pressure Bar...The ZrO 2 (2Y)/TRIP steel composites were prepared by vacuum hot pressing sintering. The room temperature static tensile and dynamic yield strength were tested using the static tensile and Split Hopkinson Pressure Bar methods, respectively. The effects of load mode on the static and dynamic mechanical behaviors were studied. The results show that the static tensile strengths of the composites decrease with the increase of ZrO 2 content, for the weak bonding of ZrO 2/ZrO 2. Under the dynamic load, the matrix TRIP steel produces the martinsitic phase transformation, which improves the dynamic strength and deformation ability of the composites. When the volume fraction of ZrO 2 exceeds 20%, the strain hardening coefficient and the dynamic deformation ability of the composites decrease.展开更多
The structure defects such as stray grains during unidirectional solidification can severely reduce the performance of single crystal turbine blades. A dendrite envelope tracking model is developed for predicting the ...The structure defects such as stray grains during unidirectional solidification can severely reduce the performance of single crystal turbine blades. A dendrite envelope tracking model is developed for predicting the structure defects of unidirectional solidification turbine blade. The normal vector of dendrite envelope is estimated by the gradient of dendrite volume fraction, and the growth velocity of the dendrite envelope (dendrite tips) is calculated with considering the anisotropy of grain growth. The solute redistribution at dendrite envelope is calculated by introducing an effective solute partition coefficient. Simulation tests show that the solute-build-up due to the rejection at envelope greatly affects grain competition and consequently solidification structure. The model is applied to predict the structure defects (e.g. stray grain) of single crystal turbine blade during unidirectional solidification. The results show that the developed model is reliable and has the following abilities: reproduce the growth competition among the different-preferential-direction grains; predict the stray grain formation; simulate the structure evolution (single crystal or dendrite grains).展开更多
Elastic properties are important in fundamental understanding of multiferroic materials. However, up to now, there is no work about anisotropy of elastic properties in orthorhombic Ca_3Mn_2O_7. In this study, using co...Elastic properties are important in fundamental understanding of multiferroic materials. However, up to now, there is no work about anisotropy of elastic properties in orthorhombic Ca_3Mn_2O_7. In this study, using coordinate transformation method, we investigated basic elastic parameters(elastic constants c'_(ij)) and engineering elastic parameters(Young's modulus E, Poisson's ratio v, and the rigidity modulus G') of orthorhombic Ca_3Mn_2O_7 along arbitrary orientations. The detailed anisotropic characteristics of these parameters were presented. The results reveal the orientation related elastic properties in mm2 point group orthorhombic Ca_3Mn_2O_7.展开更多
In order to investigate the damage characteristic of ceramic-metal interpenetrating phase composite(IPC) under dynamic loading, uniaxial dynamic compression was performed to characterize the failure of SiC/Al compos...In order to investigate the damage characteristic of ceramic-metal interpenetrating phase composite(IPC) under dynamic loading, uniaxial dynamic compression was performed to characterize the failure of SiC/Al composite with 15% porosity using a modifi ed Split Hopkinson Pressure Bar(SHPB). High speed photography was used to capture the failure procedure and set up the relationship between deformation and real stress. The deformation control technology was used to obtain collected samples in different deformations under dynamic loading. Micro CT technology was utilized to acquire real damage distribution of these specimens. Moreover, SEM was employed in comparing the damage characteristics in IPC. A summary of the available experimental results showed that IPC without lateral confi nement formed double cones. The different features compared with ceramic materials without restraint was shown to be the result of the lateral restraint effect provided by metal phase to ceramics skeleton.展开更多
The creations and manipulations of vortexes in ferroelectric materials with external stimuli are expected to be used in the design and fabrication of sensing materials and multifunctional electronic devices.In this wo...The creations and manipulations of vortexes in ferroelectric materials with external stimuli are expected to be used in the design and fabrication of sensing materials and multifunctional electronic devices.In this work,we investigated the surface charge-induced multi-vortex evolution using the phase-field simulations in BiFeO_(3).A combination of domain morphology,polarization distribution and winding number calculation was considered.The results show that vortex and anti-vortex exist simultaneously in pairs,and the total value of winding numbers is always 0.In addition,the minimum distanceΔl between the surface charge regions is 9 nm when the vortex domains are independent of each other.This work provides a reference for the manipulation of ferroelectric vortex induced by surface charges,which lays a theoretical foundation for the design and fabrication of high-density vortex memories.展开更多
Erratum to Nano Research,2023,16(8):11350–11357 https://doi.org/10.1007/s12274-023-5803-y The article"Tannic acid coated single-wall carbon nanotube membranes for the recovery of Au from trace-level solutions&qu...Erratum to Nano Research,2023,16(8):11350–11357 https://doi.org/10.1007/s12274-023-5803-y The article"Tannic acid coated single-wall carbon nanotube membranes for the recovery of Au from trace-level solutions",written by Chunmei Wang et al.,was erroneously originally published electronically on the publisher’s internet portal(currently SpringerLink)on 27 June 2023 with Fig.3(a).In Fig.3(a),the rejection of MWCNT is 38.9%instead of 98.3%.展开更多
Using the inverse algorithm of heat transfer and the nonlinear estimation method, matching calculated values with measured ones, the interfacial heat transfer coefficient at casting/Cu mould interface was determined.T...Using the inverse algorithm of heat transfer and the nonlinear estimation method, matching calculated values with measured ones, the interfacial heat transfer coefficient at casting/Cu mould interface was determined.The results show that the interfacial heat transfer coefficient at Al/Cu interface changes in a range of 4.0×10 3 1.0×10 5 W·m -2 ·K -1 and its average value is in a range of 5.0×10 37.0×10 3 W·m -2 ·K -1 .展开更多
Constructing heterojunctions and hollow multi-shelled structures can render materials with fascinating physicochemical properties,and have been regarded as two promising strategies to overcome the severe shuttling and...Constructing heterojunctions and hollow multi-shelled structures can render materials with fascinating physicochemical properties,and have been regarded as two promising strategies to overcome the severe shuttling and sluggish kinetics of polysulfide in lithium-sulfur(Li-S)batteries.However,a single strategy can only take limited effect.Modulating catalytic hosts with synergistic effects are urgently desired.Herein,Mn_(3)O_(4)-MnS heterogeneous multi-shelled hollow spheres are meticulously designed by controlled sulfuration of Mn2O3 hollow spheres,and then applied as advanced encapsulation hosts for Li-S batteries.Benefiting from the separated spatial confinement by hollow multi-shelled structure,ample exposed active sites and built-in electric field by heterogeneous interface,and synergistic effects between Mn_(3)O_(4)(strong adsorption)and MnS(fast conversion)components,the assembled battery achieves prominent rate capability and decent cyclability(0.016%decay per cycle at 2 C,1000 cycles).More crucially,satisfactory areal capacity reaches up to 7.1 mAh cm^(-2)even with high sulfur loading(8.0 mg cm^(-2))and lean electrolyte(E/S=4.0 pL mg^(-1))conditions.This work will provide inspiration for the rational design of hollow multi-shelled heterostructure for various electrocatalysis applications.展开更多
Weak ion diffusion and electron transport due to limited interlayer spacing and poor electrical conductivity have been identified as critical roadbacks for fast and abundant energy storage of both MoS2-based lithium i...Weak ion diffusion and electron transport due to limited interlayer spacing and poor electrical conductivity have been identified as critical roadbacks for fast and abundant energy storage of both MoS2-based lithium ion batteries (LIBs) and sodium ion batteries (SIBs). In this work, MoS2 porous-hollow nanorods (MoS2/m-C800) have been designed and synthesized via an annealing-followed chemistry-intercalated strategy to solve the two issues. They are uniformly assembled from ultrathin MoS2 nanosheets, deviated to the rod-axis direction, with expanded interlayer spacing due to alternate intercalation of N-doped carbon monolayers between the adjacent MoS2 monolayers. Electrochemical studies of the MoS2/m-C800 sample, as an anode of LIBs, demonstrate that the superstructure can deliver a reversible discharge capacity of 1,170 mAh·g^-1 after 100 cycles at 0.2 A·g^-1 and maintain a reversible capacity of 951 mAh·g^-1 at 1.25 A·g^-1 after 350 cycles. While for SIBs, the superstructure also delivers a reversible discharge capacity of 350 mAh·g^-1 at 0.5 A-g-1 after 500 cycles and exhibits superior rate capacity of 238 mAh·g^-1 at 15 A·g^-1 .The excellent electrochemical performance is closely related with the hierarchical superstructures, including expanded interlayer spacing, alternate intercalation of carbon monolayers and mesoporous feature, which effectively reduce ion diffusion barrier, shorten ion diffusion paths and improve electrical conductivity.展开更多
The efficient recovery of gold from industrial sewage is important for saving precious metals and remains a big challenge.We report the extraction of gold ions from a trace-level aqueous solution using a tannic acid(T...The efficient recovery of gold from industrial sewage is important for saving precious metals and remains a big challenge.We report the extraction of gold ions from a trace-level aqueous solution using a tannic acid(TA)coated single-wall carbon nanotube(SWCNT)film.The TA has many redox ligands that efficiently adsorb Au(III)from the solution and reduce them to Au particles.The interwoven SWCNTs not only act as a framework to improve the mechanical stability of the hybrid membrane,but also provide abundant paths for H_(2)O transport,and facilitate the full exposure of the TA.As a result,the hybrid membrane has an excellent ability to capture gold ions from solution with a high flux of 157 L/(m^(2)·h·bar),and an ultra-high adsorption capacity of 2095 mg/g from solutions with an extremely low gold concentration of 20 ppm.The adsorbed gold ions are reduced to Au particles,which can be easily collected by oxidation.The recovered Au nanoparticles on the TA–SWCNT hybrid film had a remarkable surface-enhanced Raman scattering effect that enabled the sensitive detection of rhodamine 6G.展开更多
基金supported by JSPS KAKENHI Grant Numbers JP22H00259,JP22K18900,JP21H01669The Light Metal Educational Foundation,Inc.,Japan+1 种基金National Natural Science Foundation of China (51971075,52220105003)National Key Research & Development Program of China (2021YFB3703300,2022YFE0110600)。
文摘The origin of unique parallel alignment of(0001) poles to transverse direction(TD) was investigated using Mg-3Al-0.4Mn(mass%)alloy sheets rolled with different process conditions. When rolling was performed with intermediate reheating, the alloy showed a sluggish static recrystallization(SRX) behavior during post-annealing, facilitating the nucleation and growth of statically recrystallized grains from extension twins. This resulted in the apparent texture component with the parallel alignment of the(0001) poles to the TD, and the sheet exhibited good ductility for both the rolling direction(RD) and TD. In contrast, continuous rolling without intermediate reheating led to the formation of severely deformed regions near double twins. SRX was promoted at such regions, forming a typical basal textural feature with weak RD-split of the(0001) poles. Although extension twins were formed after the continuous rolling, SRX was facilitated at the severely deformed regions with double twins, and the formation of the unique alignment of the(0001) poles to the TD was suppressed. The RD-split texture led to the large elongation to failure along the RD, while it along the TD decreased owing to the narrow distribution of the(0001)poles toward the TD, resulting in the in-plane anisotropy in ductility.
基金supported by JSPS KAKENHI Grant Numbers JP19K15321,JP18H03837The Amada Foundation(AF2019037-C2)+2 种基金Advanced Low Carbon Technology Research and Development Program(ALCA),12102886National Natural Science Foundation,Grant Number 51971075Nagaoka University of Technology(NUT)Presidential Research Grant.
文摘Strength and ductility synergy in an Mg-3mass%Al-Mn(AM30)alloy sheet was successfully improved via twin-roll casting and annealing at low-temperature.An AM30 alloy sheet produced by twin-roll casting,homogenization,hot-rolling,and subsequent annealing at 170℃ for 64 h exhibits a good 0.2%proof stress of 170 MPa and a large elongation to failure of 33.1%along the rolling direction.The sheet also shows in-plane isotropic tensile properties,and the 0.2%proof stress and elongation to failure along the transverse direction are 176 MPa and 35.5%,respectively.Though the sheet produced by direct-chill casting also shows moderate strengths if the annealing condition is same,the direct-chill casting leads to the deteriorated elongation to failure of 23.9%and 30.0%for the rolling and transverse directions,respectively.As well as such excellent tensile properties,a high room-temperature stretch formability with an Index Erichsen value of 8.3 mm could be obtained in the twin-roll cast sheet annealed at 170℃ for 64 h.The annealing at a higher temperature further improves the stretch formability;however,this results in the decrease of the tensile properties.Microstructure characterization reveals that the excellent combination of strengths,ductility,and stretch formability in the twin-roll cast sheet annealed at the low-temperature annealing is mainly attributed to the uniform recrystallized microstructure,fine grain size,and circular distribution of(0001)poles away from the normal direction of the sheet.
基金The authors are grateful to the National Defense Foundation of China(3090021322001,3090020221912,3090021211903.)for financial support of this work.
文摘3-nitro-1,2,4-triazol-5-one(NTO)is the main component of insensitive munitions(IM)formulation because of its outstanding insensitive properties.In this paper,a series of NTO/HMX-based compositeexplosives were prepared and characterized.The study focuses on the effect of NTO on the perfommance of the formulations,especially the safety performance.The results revealed that the mechanical sensi-tivity of fomulations was associated with NTO content,as well as the thermal conductivity,specific heat capacity and Arrhenius parameters.Then,the high amount of NTO using in formulation was proved to be helpful for NTO/HMX-based formulation to exhibit good thermal safety.Besides,by accelerating rate calorimeter(ARC)and a modified cook-off equipment,the pressure and pressure rise rate were proved as the important indicator for judging the thermal safety performance in confined spaces.Finally,the numerical simulation was used as a credible method for predicting the respond temperature of cook-off experiment.
文摘The closed die forging(or fully-enclosed die forging) method was employed to form a rotor instead of the conventional machining method. A combined female die was designed so that the rotor could be released easily from the female die after forging. In order to improve the metal flow ability, the isothermal forming technique was introduced to the closed die forging process. On the basis of the rigid-viscoplastic FEM principle, the DEFORM 3D software package was employed to simulate the forming process. The simulation results illustrate that the deformation of different part of the billet is not the same. The material near the entrance of the die cavity is deformed greatly whose strain rate and strain are both large, while the deformation of the material at the billet center is much smaller.
文摘Tetraacetyldibenzylhexaazaisowurtzitane (TADBIW) was subjected to debenzylation by nitrosating with inorganic materials available commercially to synthesize tetraacetyldinitrosohexaazaisowurtzitane (TADNSIW). TADNSIW was purified, and its structure was determined by FTIR, 1H NMR, MS and element analysis. The debenzylation reaction of TADBIW gave quantitative benzaldehyde as a by-product. This indicates that the reaction produces an imine cation as an intermediate. Hexanitrohexaazaisowurtzitane (HNIW) was prepared from unpurified TADNSIW with the yield over 96.0 % and the purity more than 98.0 %. And the mechanism of the reaction from TADNSIW to HNIW is proposed to be oxidation of nitroso and nitration of acetyl on the molecule of TADNSIW. This reaction system involved is simple, and the reaction can complete within a short time and under mild conditions. The product can be easily to separate and the waste disposed readily.
文摘TiB2P/Al composite was successfully fabricated by squeeze casting technology.Its mechanical and tribological properties were evaluated .The elimination of Ti-Al intermetallic compound was confirmed by X-ray diffraction (XRD)studies.At 45% volume fraction ,the bending strength at ambient temperature was 934 MPa.And the fracture modes included ductile failure of Al matrix and brittle fracture of TiB2 pqrticles.In dry sliding wear mode ,severe plastic deformation and adhesive wear were found on te worn surfaces of the SiCP/Al composite .But no obvious characteristics of adhesion or abrasion wear were observed on that of the TiB2P/Al composites .At the stedady stage ,the friction coefficient of the SiCP/Al composite was about 0.6 .While that of TiB2P/Al composite was only only about 0.16-0.17.
文摘Three-dimensional (3-D)self-assembly of nanos- tructures and nanodevices on a large scale remains a grand quest for mankind.Freestanding nanostructured assemblies with controlled 3-D shapes can exhibit attractive properties for sensor and other applications. Protocols for 3-D self-assembly that can be scaled up for mass production on a large up to tonnage)scale, while preserving morphological features on a small (down to nanometer)scale,are needed to allow for widespread use of 3-D nanostructures in advanced devices.However,these often conflicting requirements of scalability and precision pose a difficult challenge for synthetic (man-made)processing routes.
基金supported by the NSF of China(Grant No.12004036)State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(No.KFZD202201).
文摘Ferroelectric materials are widely used in the applications of electronic devices due to their robust spontaneous polarization.The surface roughness of ferroelectric thin films,which is closely related to the morphology,can play an important role in determining the ferroelectric domain structures.In this work,we have investigated the influence of annealing conditions on the surface morphology of epitaxial BiFeO_(3)and SrRuO_(3)thin films prepared by pulsed laser deposition on SrTiO_(3)(001)substrates.It is found that the morphology of the thin films is sensitive to the annealing time and cooling rate,and the corresponding surface roughness decreases with increasing annealing time and decreasing cooling rate.In addition,the ferroelectric domain structures of BiFeO_(3)films have been investigated by piezoelectric force microscopy,which shows a significant improvement in domain size and reverse piezoelectric response in the thin films with decreasing surface roughness.This work provides a simple way to predict and improve the ferroelectric domain structures by in situ annealing.
文摘Mechanically activated disproportionation of Nd 12 Fe 82 B 6 alloy by ball milling in hydrogen atmosphere was experimentally investigated. The aspects of thermodynamics and kinetics for the mechanically activated disproportionation of the NdFeB alloy were discussed. Both the evolution of the disproportionation reaction and the corresponding microstructure change of the alloy during milling were characterized by X ray diffraction (XRD) analysis. The results show that the matrix phase Nd 2Fe 14 B of the as cast Nd 12 Fe 82 B 6 alloy can be disproportionated into a mixture of Nd hydride (H 5Nd 2), FeB/Fe 2B, and α Fe, by ball milling under hydrogen pressure of 0.2 MPa. The as disproportionated phases are of the size about 20 nm, suggesting that ball milling in hydrogen is an effective route for low temperature disproportionation processing of the NdFeB alloy to ensure a full nano structured as disproportionated microstructure. This is the basis for synthesizing Nd 2Fe 14 B/ α Fe nano composites with magnetic exchange coupling effect by subsequent desorption recombination processing.
基金Funded by the National Natural Science Foundation of China (No. 50408016) the "863" High-Tech Research and Development Program of China (No. 2005AA332010)
文摘Mortar prisms were made with three different cementitious materials (with or without mineral admixture) plus 30% mass of limestone filler. After 28 days of curing in water at room temperature, the mortars were submerged in 2% magnesium sulfate solution at different temperatures (5℃, 20℃and alternate temperature between 5℃and 20℃) for a year. The appearance and strength development were measured on these immersed prisms at intervals, and samples selected from the surface of prisms were examined by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results show that the influence of temperature on the resistance to sulfate attack of mortar is related to the binder compositions. A higher temperature leads to a quicker strength loss and appearance deterioration of the mortar without mineral admixture. For blended cements, a higher temperature is favorable for the pozzolanic reaction of mineral admixture and the overall deterioration of mortar is reduced with the increasing temperature. When the mineral admixture has a lower reactivity, such influence of temperature on the resistance to sulfate attack of mortar containing admixtures becomes greater. At the three different solution temperatures, two blended cements show significantly improved resistances to sulfate attack. After 1 year of exposure to magnesium sulfate solutions, the formation of thaumasite was checked in the OPC mortars at both 5℃and 20℃. It is concluded that the thaumasite formation is not limited to structures at low temperature (less than 15℃).
文摘The ZrO 2 (2Y)/TRIP steel composites were prepared by vacuum hot pressing sintering. The room temperature static tensile and dynamic yield strength were tested using the static tensile and Split Hopkinson Pressure Bar methods, respectively. The effects of load mode on the static and dynamic mechanical behaviors were studied. The results show that the static tensile strengths of the composites decrease with the increase of ZrO 2 content, for the weak bonding of ZrO 2/ZrO 2. Under the dynamic load, the matrix TRIP steel produces the martinsitic phase transformation, which improves the dynamic strength and deformation ability of the composites. When the volume fraction of ZrO 2 exceeds 20%, the strain hardening coefficient and the dynamic deformation ability of the composites decrease.
基金Project(ICAST No.11305054) supported by the NEDO of Japan Subproject (5133301ZT4) supported by 973 Program Project (20052176) supported by the Natural Science Foundation of Liaoning Province, China
文摘The structure defects such as stray grains during unidirectional solidification can severely reduce the performance of single crystal turbine blades. A dendrite envelope tracking model is developed for predicting the structure defects of unidirectional solidification turbine blade. The normal vector of dendrite envelope is estimated by the gradient of dendrite volume fraction, and the growth velocity of the dendrite envelope (dendrite tips) is calculated with considering the anisotropy of grain growth. The solute redistribution at dendrite envelope is calculated by introducing an effective solute partition coefficient. Simulation tests show that the solute-build-up due to the rejection at envelope greatly affects grain competition and consequently solidification structure. The model is applied to predict the structure defects (e.g. stray grain) of single crystal turbine blade during unidirectional solidification. The results show that the developed model is reliable and has the following abilities: reproduce the growth competition among the different-preferential-direction grains; predict the stray grain formation; simulate the structure evolution (single crystal or dendrite grains).
文摘Elastic properties are important in fundamental understanding of multiferroic materials. However, up to now, there is no work about anisotropy of elastic properties in orthorhombic Ca_3Mn_2O_7. In this study, using coordinate transformation method, we investigated basic elastic parameters(elastic constants c'_(ij)) and engineering elastic parameters(Young's modulus E, Poisson's ratio v, and the rigidity modulus G') of orthorhombic Ca_3Mn_2O_7 along arbitrary orientations. The detailed anisotropic characteristics of these parameters were presented. The results reveal the orientation related elastic properties in mm2 point group orthorhombic Ca_3Mn_2O_7.
文摘In order to investigate the damage characteristic of ceramic-metal interpenetrating phase composite(IPC) under dynamic loading, uniaxial dynamic compression was performed to characterize the failure of SiC/Al composite with 15% porosity using a modifi ed Split Hopkinson Pressure Bar(SHPB). High speed photography was used to capture the failure procedure and set up the relationship between deformation and real stress. The deformation control technology was used to obtain collected samples in different deformations under dynamic loading. Micro CT technology was utilized to acquire real damage distribution of these specimens. Moreover, SEM was employed in comparing the damage characteristics in IPC. A summary of the available experimental results showed that IPC without lateral confi nement formed double cones. The different features compared with ceramic materials without restraint was shown to be the result of the lateral restraint effect provided by metal phase to ceramics skeleton.
基金supported financially by the National Key Research and Development Program of China(Grant No.2019YFA0307900),the National Natural Science Foundation of China(Grant Nos.51972028 and 12004036)and the China Postdoctoral Science Foundation(Grant No.2020M680375).This project is also supported by Young Elite Scientists Sponsorship Program by BAST(No.BYFSS2023072)State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(No.KFZD202201).
文摘The creations and manipulations of vortexes in ferroelectric materials with external stimuli are expected to be used in the design and fabrication of sensing materials and multifunctional electronic devices.In this work,we investigated the surface charge-induced multi-vortex evolution using the phase-field simulations in BiFeO_(3).A combination of domain morphology,polarization distribution and winding number calculation was considered.The results show that vortex and anti-vortex exist simultaneously in pairs,and the total value of winding numbers is always 0.In addition,the minimum distanceΔl between the surface charge regions is 9 nm when the vortex domains are independent of each other.This work provides a reference for the manipulation of ferroelectric vortex induced by surface charges,which lays a theoretical foundation for the design and fabrication of high-density vortex memories.
文摘Erratum to Nano Research,2023,16(8):11350–11357 https://doi.org/10.1007/s12274-023-5803-y The article"Tannic acid coated single-wall carbon nanotube membranes for the recovery of Au from trace-level solutions",written by Chunmei Wang et al.,was erroneously originally published electronically on the publisher’s internet portal(currently SpringerLink)on 27 June 2023 with Fig.3(a).In Fig.3(a),the rejection of MWCNT is 38.9%instead of 98.3%.
文摘Using the inverse algorithm of heat transfer and the nonlinear estimation method, matching calculated values with measured ones, the interfacial heat transfer coefficient at casting/Cu mould interface was determined.The results show that the interfacial heat transfer coefficient at Al/Cu interface changes in a range of 4.0×10 3 1.0×10 5 W·m -2 ·K -1 and its average value is in a range of 5.0×10 37.0×10 3 W·m -2 ·K -1 .
基金The support from the National Natural Science Foundation of China(No.51971083)the Natural Science Foundation of Heilongjiang Province,China(YQ 2020E007)is gratefully acknowledgedfinancially sponsored by Heilongjiang Touyan Team Program.
文摘Constructing heterojunctions and hollow multi-shelled structures can render materials with fascinating physicochemical properties,and have been regarded as two promising strategies to overcome the severe shuttling and sluggish kinetics of polysulfide in lithium-sulfur(Li-S)batteries.However,a single strategy can only take limited effect.Modulating catalytic hosts with synergistic effects are urgently desired.Herein,Mn_(3)O_(4)-MnS heterogeneous multi-shelled hollow spheres are meticulously designed by controlled sulfuration of Mn2O3 hollow spheres,and then applied as advanced encapsulation hosts for Li-S batteries.Benefiting from the separated spatial confinement by hollow multi-shelled structure,ample exposed active sites and built-in electric field by heterogeneous interface,and synergistic effects between Mn_(3)O_(4)(strong adsorption)and MnS(fast conversion)components,the assembled battery achieves prominent rate capability and decent cyclability(0.016%decay per cycle at 2 C,1000 cycles).More crucially,satisfactory areal capacity reaches up to 7.1 mAh cm^(-2)even with high sulfur loading(8.0 mg cm^(-2))and lean electrolyte(E/S=4.0 pL mg^(-1))conditions.This work will provide inspiration for the rational design of hollow multi-shelled heterostructure for various electrocatalysis applications.
基金supported by the National Natural Science Foundation of China (No.51872172)Natural Science Foundation of Shandong Province (Nos.ZR2018MEM010 and ZR2019MEM021)+1 种基金Major Research and Development Program for Public Welfare in Shandong (No.2018GGX102021)Young Scholars Program of Shandong University.
文摘Weak ion diffusion and electron transport due to limited interlayer spacing and poor electrical conductivity have been identified as critical roadbacks for fast and abundant energy storage of both MoS2-based lithium ion batteries (LIBs) and sodium ion batteries (SIBs). In this work, MoS2 porous-hollow nanorods (MoS2/m-C800) have been designed and synthesized via an annealing-followed chemistry-intercalated strategy to solve the two issues. They are uniformly assembled from ultrathin MoS2 nanosheets, deviated to the rod-axis direction, with expanded interlayer spacing due to alternate intercalation of N-doped carbon monolayers between the adjacent MoS2 monolayers. Electrochemical studies of the MoS2/m-C800 sample, as an anode of LIBs, demonstrate that the superstructure can deliver a reversible discharge capacity of 1,170 mAh·g^-1 after 100 cycles at 0.2 A·g^-1 and maintain a reversible capacity of 951 mAh·g^-1 at 1.25 A·g^-1 after 350 cycles. While for SIBs, the superstructure also delivers a reversible discharge capacity of 350 mAh·g^-1 at 0.5 A-g-1 after 500 cycles and exhibits superior rate capacity of 238 mAh·g^-1 at 15 A·g^-1 .The excellent electrochemical performance is closely related with the hierarchical superstructures, including expanded interlayer spacing, alternate intercalation of carbon monolayers and mesoporous feature, which effectively reduce ion diffusion barrier, shorten ion diffusion paths and improve electrical conductivity.
基金supported by the National Natural Science Foundation of China(Nos.52188101,52130209,52072375,and 51872293)the Liaoning Revitalization Talents Program(No.XLYC2002037)a Basic Research Project of the Natural Science Foundation of Shandong Province,China(No.ZR2019ZD49).
文摘The efficient recovery of gold from industrial sewage is important for saving precious metals and remains a big challenge.We report the extraction of gold ions from a trace-level aqueous solution using a tannic acid(TA)coated single-wall carbon nanotube(SWCNT)film.The TA has many redox ligands that efficiently adsorb Au(III)from the solution and reduce them to Au particles.The interwoven SWCNTs not only act as a framework to improve the mechanical stability of the hybrid membrane,but also provide abundant paths for H_(2)O transport,and facilitate the full exposure of the TA.As a result,the hybrid membrane has an excellent ability to capture gold ions from solution with a high flux of 157 L/(m^(2)·h·bar),and an ultra-high adsorption capacity of 2095 mg/g from solutions with an extremely low gold concentration of 20 ppm.The adsorbed gold ions are reduced to Au particles,which can be easily collected by oxidation.The recovered Au nanoparticles on the TA–SWCNT hybrid film had a remarkable surface-enhanced Raman scattering effect that enabled the sensitive detection of rhodamine 6G.