In order to explore an effective way to shorten treatment time and enhance the quality of treatment coating, AC micro-arc oxidation was conducted to treat the surface of AZ31 B deformation magnesium alloy in KF+KOH t...In order to explore an effective way to shorten treatment time and enhance the quality of treatment coating, AC micro-arc oxidation was conducted to treat the surface of AZ31 B deformation magnesium alloy in KF+KOH treatment solution. The infl uences of micro-arc oxidation parameters such as concentration of KF, concentration of KOH, output voltage of booster, temperature of treatment solution, and treatment time on treatment coating thickness were raveled out under different conditions. The structure and composition of treatment coating were determined, the growth mechanism of treatment coating was discussed, and the quick surface treatment technology for compact treatment coating with maximum thickness was developed. The experimental results show that: A maximum 33 μm-thick compact treatment coating, consisting of MgF2 and MgO mainly, can be formed on AZ31 B in 112 s under the conditions of 1 132 g/L KF, 382 g/L KOH, 66 V for output voltage of booster and 34 ℃ of treatment solution which were optimized by a genetic algorithm from the model established by artifi cial neural networks. There are no "crater-shaped" pores in this treatment coating as the heat shock resulting from the smooth variation of AC sinusoidal voltage is far smaller than that of the rigidly varied DC or pulse current. The treatment time is only one sixth of that adopted in the other surface treatment technology at best, principally for the reason that the coating can always grow irrespective of the electric potential of AZ31 B. This investigation lays a fi rm foundation for the extensive application of magnesium alloy.展开更多
The tilt-blade mechanical stirring of A356-2.5vol.%SiCp liquid was conducted in a cylindrical crucible to solve the problem of nonhomogeneous radial distribution of SiC particles in conventional straight-blade mechani...The tilt-blade mechanical stirring of A356-2.5vol.%SiCp liquid was conducted in a cylindrical crucible to solve the problem of nonhomogeneous radial distribution of SiC particles in conventional straight-blade mechanical stirring. The radial distribution of SiC particles in A356 liquid was studied under the conditions of 25° for horizontal tilt angle α of the blade, 200 r/min for rotating speed of stirrer and 10 mm/s for speed of moving up and down of stirrer. The results show that there exists a nonlinear relationship between circumferential tilt angle β of the blade and radial relative deviation d of SiCp content in A356 liquid. When β is smaller than 20°, the d of SiCp content in A356 liquid between the center and the periphery of crucible decreases with increasing β. Conversely, when β is bigger than 26°, d increases with increasing β. Only when β is about 20°, d can be equal to nought i.e. uniform radial distribution of SiC particles can be realized. It can be seen that the nonhomogeneous radial distribution of SiC particles in conventional straight-blade mechanical stirring can be eliminated in this tilt-blade mechanical stirring of A356-SiCp liquid.展开更多
In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed ...In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed loop active power factorcorrection(APFC)control method with feed-forward is proposed.Firstly,the small signal model of Boost PFC control systemis built and the system transfer function is deduced,and then the parameters of the main device with Boost topology is estimated.By means of the feed-forward,the system can quickly respond to the change in input voltage.Furthermore,the use ofvoltage loop and current loop can achieve input current and output voltage regulation Simulink modeling shows that this methodcan effectively control the output voltage in case of input voltage largely fluctuating,improve the system dynamic response abilityand input power factor,and reduce the input current harmonic distortion展开更多
基金Funded by the National Natural Science Foundation of China(No.50974010)the Natural Science Foundation of Beijing City,China(No.2102039)
文摘In order to explore an effective way to shorten treatment time and enhance the quality of treatment coating, AC micro-arc oxidation was conducted to treat the surface of AZ31 B deformation magnesium alloy in KF+KOH treatment solution. The infl uences of micro-arc oxidation parameters such as concentration of KF, concentration of KOH, output voltage of booster, temperature of treatment solution, and treatment time on treatment coating thickness were raveled out under different conditions. The structure and composition of treatment coating were determined, the growth mechanism of treatment coating was discussed, and the quick surface treatment technology for compact treatment coating with maximum thickness was developed. The experimental results show that: A maximum 33 μm-thick compact treatment coating, consisting of MgF2 and MgO mainly, can be formed on AZ31 B in 112 s under the conditions of 1 132 g/L KF, 382 g/L KOH, 66 V for output voltage of booster and 34 ℃ of treatment solution which were optimized by a genetic algorithm from the model established by artifi cial neural networks. There are no "crater-shaped" pores in this treatment coating as the heat shock resulting from the smooth variation of AC sinusoidal voltage is far smaller than that of the rigidly varied DC or pulse current. The treatment time is only one sixth of that adopted in the other surface treatment technology at best, principally for the reason that the coating can always grow irrespective of the electric potential of AZ31 B. This investigation lays a fi rm foundation for the extensive application of magnesium alloy.
基金supported by the National Natural Science Foundation of China (No. 50974010)the Natural Science Foundation of Beijing (No. 2102039)
文摘The tilt-blade mechanical stirring of A356-2.5vol.%SiCp liquid was conducted in a cylindrical crucible to solve the problem of nonhomogeneous radial distribution of SiC particles in conventional straight-blade mechanical stirring. The radial distribution of SiC particles in A356 liquid was studied under the conditions of 25° for horizontal tilt angle α of the blade, 200 r/min for rotating speed of stirrer and 10 mm/s for speed of moving up and down of stirrer. The results show that there exists a nonlinear relationship between circumferential tilt angle β of the blade and radial relative deviation d of SiCp content in A356 liquid. When β is smaller than 20°, the d of SiCp content in A356 liquid between the center and the periphery of crucible decreases with increasing β. Conversely, when β is bigger than 26°, d increases with increasing β. Only when β is about 20°, d can be equal to nought i.e. uniform radial distribution of SiC particles can be realized. It can be seen that the nonhomogeneous radial distribution of SiC particles in conventional straight-blade mechanical stirring can be eliminated in this tilt-blade mechanical stirring of A356-SiCp liquid.
基金National Natural Science Foundation of China(No.61261029)
文摘In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed loop active power factorcorrection(APFC)control method with feed-forward is proposed.Firstly,the small signal model of Boost PFC control systemis built and the system transfer function is deduced,and then the parameters of the main device with Boost topology is estimated.By means of the feed-forward,the system can quickly respond to the change in input voltage.Furthermore,the use ofvoltage loop and current loop can achieve input current and output voltage regulation Simulink modeling shows that this methodcan effectively control the output voltage in case of input voltage largely fluctuating,improve the system dynamic response abilityand input power factor,and reduce the input current harmonic distortion