期刊文献+
共找到574篇文章
< 1 2 29 >
每页显示 20 50 100
Enhanced mechanical and thermal properties of two-dimensional SiC and GeC with temperature and size dependence
1
作者 黄磊 任凯 +1 位作者 张焕萍 覃华松 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期101-107,共7页
Two-dimensional materials with novel mechanical and thermal properties are available for sensors,photodetectors,thermoelectric,crystal diode and flexible nanodevices.In this investigation,the mechanical and thermal pr... Two-dimensional materials with novel mechanical and thermal properties are available for sensors,photodetectors,thermoelectric,crystal diode and flexible nanodevices.In this investigation,the mechanical and thermal properties of pristine SiC and GeC are explored by molecular dynamics simulations.First,the fracture strength and fracture strain behaviors are addressed in the zigzag and armchair directions at 300 K.The excellent toughness of SiC and GeC is demonstrated by the maximal fracture strain of 0.43 and 0.47 in the zigzag direction,respectively.The temperature-tunable tensile strength of SiC and GeC is also investigated.Then,using non-equilibrium molecular dynamics(NEMD)calculations,the thermal performances of SiC and GeC are explored.In particular,the thermal conductivity of SiC and GeC shows a pronounced size dependence and reaches up to 85.67 W·m^(-1)-K^(-1)and 34.37 W·m^(-1)-K^(-1),respectively.The goal of our work is to provide a theoretical framework that can be used in the near future.This will enable us to design an efficient thermal management scheme for two-dimensional materials in electronics and optoelectronics. 展开更多
关键词 TWO-DIMENSIONAL molecular dynamics mechanical property heat transport
下载PDF
Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
2
作者 李恒梅 杨保华 +1 位作者 袁洪春 许业军 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期311-318,共8页
A scheme is proposed to investigate the non-classical states generated by a quantum scissors device(QSD) operating on the the cavity mode of an optomechanical system. When the catalytic QSD acts on the cavity mode of ... A scheme is proposed to investigate the non-classical states generated by a quantum scissors device(QSD) operating on the the cavity mode of an optomechanical system. When the catalytic QSD acts on the cavity mode of the optomechanical system, the resulting state contains only the vacuum, single-photon and two-photon states depending upon the coupling parameter of the optomechanical system as well as the transmission coefficients of beam splitters(BSs). Especially, the output state is just a class of multicomponent cat state truncations at time t = 2π by choosing the appropriate value of coupling parameter. We discuss the success probability of such a state and the fidelity between the output state and input state via QSD. Then the linear entropy is used to investigate the entanglement between the two subsystems, finding that QSD operation can enhance their entanglement degree. Furthermore, we also derive the analytical expression of the Wigner function(WF) for the cavity mode via QSD and numerically analyze the WF distribution in phase space at time t =2π. These results show that the high non-classicality of output state can always be achieved by modulating the coupling parameter of the optomechanical system as well as the transmittance of BSs. 展开更多
关键词 optomechanical system quantum scissors device quantum state engineering linear entropy
下载PDF
The effect of different high pressure die casting parameters on 3D microstructure and mechanical properties of AE44 magnesium alloy
3
作者 Tong-tong Zhang Wen-bo Yu +3 位作者 Chao-sheng Ma Wan-tong Chen Lin Zhang Shou-mei Xiong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3141-3150,共10页
To understand the relationship between the process-microstructure-mechanical properties of the high-pressure die-casting(HPDC) AE44 magnesium alloy, 3D reconstruction and 2D characterization were carried out on the HP... To understand the relationship between the process-microstructure-mechanical properties of the high-pressure die-casting(HPDC) AE44 magnesium alloy, 3D reconstruction and 2D characterization were carried out on the HPDC castings produced with different process parameters(low slow-shot speed, fast slow-shot speed, solidification pressure). Microstructural characterization revealed that the formation of shrinkage pores are closely related to ESCs, which were mainly controlled by the low slow-shot speed in shot sleeve(ESCs growth time) and fast slow-shot speed into the die cavity(distribution of ESCs). In addition, solidification pressure can significantly reduce the shrinkage porosity in the center by improving the feeding capacity of liquid metal. Tensile fracture revealed that the tearing ridge is mainly evolved from the slip band of ESCs. The quantity and distribution of ESCs determine the fracture mode of castings. The relationship between mechanical properties of castings and the morphology of ESCs and porosity is also statistically discussed. 展开更多
关键词 HPDC parameters POROSITY Externally solidified crystals(ESCs) Tensile fracture 3D reconstruction
下载PDF
Multiscale Evaluation of Mechanical Properties for Metal-Coated Lattice Structures
4
作者 Lizhe Wang Liu He +5 位作者 Xiang Wang Sina Soleimanian Yanqing Yu Geng Chen Ji Li Min Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期271-280,共10页
With the combination of 3D printing and electroplating technique,metal-coated resin lattice is a viable way to achieve lightweight design with desirable responses.However,due to high structural complexity,mechanical a... With the combination of 3D printing and electroplating technique,metal-coated resin lattice is a viable way to achieve lightweight design with desirable responses.However,due to high structural complexity,mechanical analysis of the macroscopic lattice structure demands high experimental or numerical costs.To efficiently investigate the mechanical behaviors of such structure,in this paper a multiscale numerical method is proposed to study the effective properties of the metal-coated Body-Centered-Cubic(BCC)lattices.Unlike studies of a similar kind in which the effective parameters can be predicted from a single unit cell model,it is noticed that the size effect of representative volume element(RVE)is severe and an insensitive prediction can be only obtained from models containing multiple-unit-cells.To this end,the paper determines the minimum number of unit cells in single RVE.Based on the proposed method that is validated through the experimental comparison,parametric studies are conducted to estimate the impact of strut diameter and coating film thickness on structural responses.It is shown that the increase of volume fraction may improve the elastic modulus and specific modulus remarkably.In contrast,the increase of thickness of coating film only leads to monotonously increased elastic modulus.For this reason,there should be an optimal coating film thickness for the specific modulus of the lattice structure.This work provides an effective method for evaluating structural mechanical properties via the mesoscopic model. 展开更多
关键词 Metal-coated lattice Homogenization theory Parametric study Elastic and specific modulus
下载PDF
Torque effect on vibration behavior of high-speed train gearbox under internal and external excitations
5
作者 Yue Zhou Xi Wang +5 位作者 Hongbo Que Rubing Guo Xinhai Lin Siqin Jin Chengpan Wu Yu Hou 《Railway Engineering Science》 EI 2024年第2期229-243,共15页
The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavio... The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavior in the actual service environment.This paper focuses on the gearbox in the high-speed train to carry out the bench test,in which various operat-ing conditions(torques and rotation speeds)were set up and the excitation condition covering both internal and external was created.Acceleration responses on multiple positions of the gearbox were acquired in the test and the vibration behavior of the gearbox was studied.Meanwhile,a stochastic excitation modal test was also carried out on the test bench under different torques,and the modal parameter of the gearbox was identified.Finally,the sweep frequency response of the gearbox under gear meshing excitation was analyzed through dynamic modeling.The results showed that the torque has an attenuating effect on the amplitude of gear meshing frequency on the gearbox,and the effect of external excitation on the gearbox vibration cannot be ignored,especially under the rated operating condition.It was also found that the torque affects the modal param-eter of the gearbox significantly.The torque has a great effect on both the gear meshing stiffness and the bearing stiffness in the transmission system,which is the inherent reason for the changed modal characteristics observed in the modal test and affects the vibration behavior of the gearbox consequently. 展开更多
关键词 High-speed train GEARBOX Bench test Vibration behavior Modal identification
下载PDF
Recent Progress in Improving Rate Performance of Cellulose-Derived Carbon Materials for Sodium-Ion Batteries
6
作者 Fujuan Wang Tianyun Zhang +2 位作者 Tian Zhang Tianqi He Fen Ran 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期102-147,共46页
Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge... Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge to achieve high power density sodium-ion batteries.The present review comprehensively elucidates the structural characteristics of cellulose-based materials and cellulose-derived carbon materials,explores the limitations in enhancing rate performance arising from ion diffusion and electronic transfer at the level of cellulose-derived carbon materials,and proposes corresponding strategies to improve rate performance targeted at various precursors of cellulose-based materials.This review also presents an update on recent progress in cellulose-based materials and cellulose-derived carbon materials,with particular focuses on their molecular,crystalline,and aggregation structures.Furthermore,the relationship between storage sodium and rate performance the carbon materials is elucidated through theoretical calculations and characterization analyses.Finally,future perspectives regarding challenges and opportunities in the research field of cellulose-derived carbon anodes are briefly highlighted. 展开更多
关键词 CELLULOSE Hard carbon Anode materials Rate performance Sodium-ion batteries
下载PDF
Sustainable Mining in the Era of Artificial Intelligence
7
作者 Long Chen Yuting Xie +2 位作者 Yutong Wang Shirong Ge Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期1-4,共4页
The mining sector historically drove the global economy but at the expense of severe environmental and health repercussions,posing sustainability challenges[1]-[3].Recent advancements on artificial intelligence(AI)are... The mining sector historically drove the global economy but at the expense of severe environmental and health repercussions,posing sustainability challenges[1]-[3].Recent advancements on artificial intelligence(AI)are revolutionizing mining through robotic and data-driven innovations[4]-[7].While AI offers mining industry advantages,it is crucial to acknowledge the potential risks associated with its widespread use.Over-reliance on AI may lead to a loss of human control over mining operations in the future,resulting in unpredictable consequences. 展开更多
关键词 SUSTAINABLE MINING consequences
下载PDF
Wave nature of Rosensweig instability
8
作者 李柳 李德才 +2 位作者 戚志强 王璐 张志力 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期471-479,共9页
The explicit analytical solution of Rosensweig instability spikes'shapes obtained by Navier-Stokes(NS)equation in diverse magnetic field H vertical to the flat free surface of ferrofluids are systematically studie... The explicit analytical solution of Rosensweig instability spikes'shapes obtained by Navier-Stokes(NS)equation in diverse magnetic field H vertical to the flat free surface of ferrofluids are systematically studied experimentally and theoretically.After carefully analyzing and solving the NS equation in elliptic form,the force balanced surface equations of spikes in Rosensweig instability are expressed as cosine wave in perturbated magnetic field and hyperbolic tangent in large magnetic field,whose results both reveal the wave-like nature of Rosensweig instability.The results of hyperbolic tangent form are perfectly fitted to the experimental results in this paper,which indicates that the analytical solution is basically correct.Using the forementioned theoretical results,the total energy of the spike distribution pattern is calculated.By analyzing the energy components under different magnetic field intensities H,the hexagon-square transition of Rosensweig instability is systematically discussed and explained in an explicit way. 展开更多
关键词 FERROFLUIDS Rosensweig instability hexagon-square transition
下载PDF
Research on the evolution law of dynamic performance of CR400BF EMU train based on stochastic dynamics simulation
9
作者 Di Cheng Yuqing Wen +3 位作者 Zhiqiang Guo Xiaoyi Hu Pengsong Wang Zhikun Song 《Railway Sciences》 2024年第2期143-155,共13页
Purpose–This paper aims to obtain the evolution law of dynamic performance of CR400BF electric multiple unit(EMU).Design/methodology/approach–Using the dynamic simulation based on field test,stiffness of rotary arm ... Purpose–This paper aims to obtain the evolution law of dynamic performance of CR400BF electric multiple unit(EMU).Design/methodology/approach–Using the dynamic simulation based on field test,stiffness of rotary arm nodes and damping coefficient of anti-hunting dampers were tested.Stiffness,damping coefficient,friction coefficient,track gauge were taken as random variables,the stochastic dynamics simulation method was constructed and applied to research the evolution law with running mileage of dynamic index of CR400BF EMU.Findings–The results showed that stiffness and damping coefficient subjected to normal distribution,the mean and variance were computed and the evolution law of stiffness and damping coefficient with running mileage was obtained.Originality/value–Firstly,based on the field test we found that stiffness of rotary arm nodes and damping coefficient of anti-hunting dampers subjected to normal distribution,and the evolution law of stiffness and damping coefficient with running mileage was proposed.Secondly stiffness,damping coefficient,friction coefficient,track gauge were taken as random variables,the stochastic dynamics simulation method was constructed and applied to the research to the evolution law with running mileage of dynamic index of CR400BF EMU. 展开更多
关键词 Vehicle system dynamics Stiffness of rotary arm nodes Anti-snaking damper damping Random variable
下载PDF
Study of rare earth element effect on microstructures and mechanical properties of an Al-Cu-Mg-Si cast alloy 被引量:5
10
作者 WAN Weiwei HAN Jianmin LI Weijing WANG Jinhua 《Rare Metals》 SCIE EI CAS CSCD 2006年第z2期129-132,共4页
The improvements of microstructures and properties of a high strength aluminum cast alloy were studied. The effects of rare earth elements on the microstructures and mechanical properties of the high strength cast all... The improvements of microstructures and properties of a high strength aluminum cast alloy were studied. The effects of rare earth elements on the microstructures and mechanical properties of the high strength cast alloy Al-Cu-Mg-Si were investigated. The result shows that the addition of rare earth elements can change the microstructures in refining the grain size of the alloy and making the needle-like and laminar eutectic Si to a granular Si. With the increase of the rare earth, the tensile strength and elongation of the alloy increase first and then fall down. The mechanical properties of the alloy will reach the highest value when the content of rare earth elements is about 0.7%. 展开更多
关键词 high STRENGTH ALUMINUM CAST alloy Al-Cu-Mg-Si RARE EARTH ELEMENTS microstructure mechanical properties
下载PDF
Effect of Ce addition on microstructures and mechanical properties of A380 aluminum alloy prepared by squeeze-casting 被引量:4
11
作者 Xiao-hui Ao Shu-ming Xing +1 位作者 Bai-shui Yu Qing-you Han 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第5期554-563,共10页
The effect of cerium(Ce)addition on the eutectic Si,β-Al_5Fe Si phase,and the tensile properties of A380 alloy specimens prepared by squeeze-casting were studied by optical microscopy(OM),scanning electron microscopy... The effect of cerium(Ce)addition on the eutectic Si,β-Al_5Fe Si phase,and the tensile properties of A380 alloy specimens prepared by squeeze-casting were studied by optical microscopy(OM),scanning electron microscopy(SEM),and X-ray diffraction(XRD).The experimental results showed that Ce more effectively modified the eutectic Si and refined theβ-Al_5Fe Si.The refinement effect significantly increased under a specific pressure of 100 MPa with the addition of Ce from 0.1wt%to 0.9wt%.In contrast,the average length and the aspect ratio of the eutectic Si andβ-Al_5Fe Si exhibited their optimal values when the content of the added Ce was greater than 0.5wt%.Needle-like Al_8Cu_4Ce was precipitated with the addition of excessive Ce;hence,the mechanical properties of A380 gradually decreased with increasing Ce content in the range from 0.3wt%to 0.9wt%. 展开更多
关键词 CERIUM EUTECTIC Si Fe-rich PHASES squeeze-casting mechanical properties
下载PDF
Microstructure characteristics and mechanical properties of rheoformed wrought aluminum alloy 2024 被引量:7
12
作者 郭洪民 杨湘杰 张萌 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第3期555-561,共7页
The microstructure characteristics and mechanical properties of 2024 wrought aluminum alloy produced by a new rheoforming technique under as-cast and optimized heat treatment conditions were investigated. The present ... The microstructure characteristics and mechanical properties of 2024 wrought aluminum alloy produced by a new rheoforming technique under as-cast and optimized heat treatment conditions were investigated. The present rheoforming combined the independently developed rheocasting process, named as LSPSF (low superheat pouring with a shear field) process, and the existing squeeze casting process. The experimental results show that LSPSF can be used to prepare sound semi-solid slurry within 25 s to fully meet the production rate of squeeze casting. The primary α(Al) presents in mean equivalent diameter of 69 μm and shape factor of 0.76, and features zero-entrapped eutectics. Compared with conventional squeeze casting, the present LSPSF rheoforming can improve the microstructures and mechanical properties. An optimized heat treatment results in substantial reduction of microsegregation and significant improvement of mechanical properties, such as yield strength of 321 MPa, ultimate tensile strength of 428 MPa and elongation of 12%. 展开更多
关键词 半固体 铸造程序 铝合金 微结构
下载PDF
Distribution of SiC particles in semisolid electromagnetic-mechanical stir-casting Al-SiC composite 被引量:4
13
作者 Yun-hui Du Peng Zhang +1 位作者 Wei-yi Zhang Yu-jie Wang 《China Foundry》 SCIE 2018年第5期351-357,共7页
The distribution of SiC particles in Al-SiC composite can greatly influence the mechanical performances of Al-SiC composite. To realize the homogeneous distribution of SiC particles in stir-casting Al-SiC composite, s... The distribution of SiC particles in Al-SiC composite can greatly influence the mechanical performances of Al-SiC composite. To realize the homogeneous distribution of SiC particles in stir-casting Al-SiC composite, semisolid stir casting of Al-4.25 vol.%SiC composite was conducted using a special electromagneticmechanical stirring equipment made by our team, in which there are three uniformly-distributed blades with a horizontal tilt angle of 25 ° to mechanically raise the SiC particles by creating an upward movement of slurry under electromagnetic stirring. The microstructure of the as-cast Al-SiC composites was observed by Scanning Electron Mcroscopy(SEM). The volume fraction of SiC particles was measured by image analysis using the Quantimet 520 Image Processing and Analysis System. The tensile strength of the Al-4.25 vol.%SiC composites was measured by tensile testing. Results show that the Al-4.25 vol.%SiC composites with the homogeneous distrbutin of SiC particles can be obtained by the electromagnetic-mechanical stirring casting with the speed of 300 and 600 r·min-1 at 620 °C. The differences between the volume fraction of Si C particles at the top of ingot and that at the bottom are both ~0.04 vol.% with the stirring speed of 300 and 600 r·min-1, which are so small that the distribution of SiC particles can be seen as the homogeneous. The tensile strength of the Al matrix is enhanced by 51.2% due to the uniformly distributed SiC particles. The porosity of the composite mainly results from the solidification shrinkage of slurry and it is less than 0.04 vol.%. 展开更多
关键词 AI-SiC COMPOSITE STIR CASTING particle DISTRIBUTION microstructure performance
下载PDF
Influence of Sb modification on microstructures and mechanical properties of Mg2 Si/AM60 composites 被引量:3
14
作者 闫洪 胡勇 吴孝泉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期411-415,共5页
关键词 复合材料 材料力学性能 微观结构 MG2SI 变质 SB 作者 微观力学性能
下载PDF
Mechanical Properties of Mo Fiber-reinforced Resin Mineral Composites with Different Mass Ratio of Resin and Hardener 被引量:2
15
作者 张超 张进生 +1 位作者 REN Xiuhua ZHANG Jianhua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第2期383-390,共8页
Mo fibers were added to RMC with different mass ratios of resin and hardener to improve its mechanical properties. The influences of fiber surface state and hardener content on interface bonding strength and mechanica... Mo fibers were added to RMC with different mass ratios of resin and hardener to improve its mechanical properties. The influences of fiber surface state and hardener content on interface bonding strength and mechanical properties of RMC were studied, respectively. Furthermore, strain values of typical measuring points on samples of Mo fiber reinforced RMC(MFRRMC) under different loads were obtained by experiments and finite element analysis. The experimental results prove that scrap Mo fibers can improve interface bonding strength and mechanical properties of RMC better than new smooth Mo fibers because of the discharge pits randomly distributed on the surface of scrap fibers. With the decrease of hardener content, not only interface bonding strength between fiber and matrix, but also compression and flexural strength of MFRRMC increase firstly and then decrease. The properties are best while the mass ratio of resin and hardener reaches 4:1. It is indicated that finite element calculation data basically agree with experimental data by comparison of strain values on typical measuring points, which can provide an important intuitive reference for successive study on other mechanical properties of MFRRMC, validating the correctness of simulation method as well. 展开更多
关键词 MO FIBER RESIN mineral composite(RMC) reinforcing effect compression STRENGTH flexural STRENGTH bonding STRENGTH
下载PDF
Mechanical properties and fractograph of SiC foam-SiC particles-Al composites 被引量:2
16
作者 赵龙志 赵明娟 +3 位作者 曹小明 田冲 胡宛平 张劲松 《中国有色金属学会会刊:英文版》 CSCD 2007年第A02期644-648,共5页
A new type of hybrid SiC foam-SiC particles-Al composites used as an electronic packaging substrate material were fabricated by squeeze casting technique. The mechanical properties and the fracture mechanism of the hy... A new type of hybrid SiC foam-SiC particles-Al composites used as an electronic packaging substrate material were fabricated by squeeze casting technique. The mechanical properties and the fracture mechanism of the hybrid composites were investigated. The influence of SiC particles and foam hybrid reinforcement on the behavior of the composites was studied. The results show that the interface bonding in the hybrid composites is good for the composites with the unique double interpenetrating structure. The compressive strength of the hybrid composite reinforced by the SiC with the volume fraction of 59.9% is 680 MPa,which is higher than that of any other composites with the same volume fraction of SiC particles reinforcement. 展开更多
关键词 碳化硅 复合物 机械性能 断口组织
下载PDF
Microstructure and Properties of W-15Cu Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering Process 被引量:2
17
作者 章桥新 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第3期399-402,共4页
W-15Cu composite powders prepared by mechanical alloying (MA) of raw powders were consolidated by spark plasma sintering (SPS) process at temperature ranged 1 230-1 300 ℃ for 10 min and under a pressure of 30 MPa... W-15Cu composite powders prepared by mechanical alloying (MA) of raw powders were consolidated by spark plasma sintering (SPS) process at temperature ranged 1 230-1 300 ℃ for 10 min and under a pressure of 30 MPa. By using high energy milling, particles containing very fine tungsten grains embedded in copper, called composite particles, could be produced. The W grains were homogeneously dispersed in copper phase, which was very important to obtain W-Cu alloy with high mechanical properties, fine and homogeneous microstructure. The microstructure and properties of W-15Cu alloys prepared by SPS processes at different temperature were researched. The results show that W-15Cu alloys consolidated by SPS can reach 99.6 % relative density, and transverse rupture strength (TRS) is 1 400.9 MPa, Rockwell C hardness (HRC) is 45.2, the thermal conductivity is 196 W/m-K at room temperature, the average grain size is less than 2 μm, and W-15Cu alloy with excellent properties, homogeneous and fine microstructure is obtained. 展开更多
关键词 W-15Cu mechanical alloying spark plasma sintering (SPS)
下载PDF
Mechanical Properties and Microstructure of Si_(3)N_(4)-TiC Nanocomposites 被引量:1
18
作者 Zhijie LUE Xing AI Jun ZHAO 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第6期899-902,共4页
Si3N4/TiC nanocomposite ceramics have been fabricated by hot pressing technique with Al2O3 and Y2O3 as additives. The results showed that well dispersed composite powder was carried out by adding dispersant and adjust... Si3N4/TiC nanocomposite ceramics have been fabricated by hot pressing technique with Al2O3 and Y2O3 as additives. The results showed that well dispersed composite powder was carried out by adding dispersant and adjusting pH values of suspensions. Remarkable increase in flexural strength at room temperatures was obtained by adding nanoparticles in Si3N4 matrix with 10% (wt pct) of nano-Si3N4 and 15% of nano-TiC. The flexural strength, fracture toughness and hardness were 1025 MPa, 7.5 MPa.m^1/2 and 15.6 GPa, respectively. The microstructures of materials were analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which indicated that TiC nanoparticles distribute in the matrix and at the grain boundaries. According to the fracture form, low contents of nano particles could refine matrix grains and lead to the crack deflection as well as crack pinning. The multiplex microstructure was formed by mixing nano-Si3N4 particles. The crack trajectories exhibited crack deflection, rod-like grain bridging and pull-out. 展开更多
关键词 Si3N4/TiC NANOCOMPOSITE Mechanical properties MICROSTRUCTURE
下载PDF
Ultrasonic power features of wire bonding and thermosonic flip chip bonding in microelectronics packaging 被引量:1
19
作者 李军辉 韩雷 钟掘 《Journal of Central South University of Technology》 EI 2008年第5期684-688,共5页
The driving voltage and current signals of piezoceramic transducer (PZT) were measured directly by designing circuits from ultrasonic generator and using a data acquisition software system. The input impedance and pow... The driving voltage and current signals of piezoceramic transducer (PZT) were measured directly by designing circuits from ultrasonic generator and using a data acquisition software system. The input impedance and power of PZT were investigated by using root mean square (RMS) calculation. The vibration driven by high frequency was tested by laser Doppler vibrometer (PSV-400-M2). And the thermosonic bonding features were observed by scanning electron microscope (JSM-6360LV). The results show that the input power of bonding is lower than that of no load. The input impedance of bonding is greater than that of no load. Nonlinear phase, plastic flow and expansion period, and strengthening bonding process are shown in the impedance and power curves. The ultrasonic power is in direct proportion to the vibration displacement driven by the power, and greater displacements driven by high power (>5 W) result in welding failure phenomena, such as crack, break, and peeling off in wedge bonding. For thermosonic flip chip bonding, the high power decreases position precision of bonding or results in slippage and rotation phenomena of bumps. To improve reliability and precision of thermosonic bonding, the low ultrasonic power (about 1-5 W) should be chosen. 展开更多
关键词 超声波能量 阻抗 微电子学 实验研究
下载PDF
Measured load spectra of the bearing in high-speed train gearbox under different gear meshing conditions 被引量:2
20
作者 Yu Hou Xi Wang +7 位作者 Shouguang Sun Hongbo Que Rubing Guo Xinhai Lin Siqin Jin Chengpan Wu Yue Zhou Xiaolong Liu 《Railway Engineering Science》 2023年第1期37-51,共15页
The load spectrum is a crucial factor for assess-ing the fatigue reliability of in-service rolling element bear-ings in transmission systems.For a bearing in a high-speed train gearbox,a measurement technique based on... The load spectrum is a crucial factor for assess-ing the fatigue reliability of in-service rolling element bear-ings in transmission systems.For a bearing in a high-speed train gearbox,a measurement technique based on strain detection of bearing outer ring was used to instrument the bearing and determine the time histories of the distributed load in the bearing under different gear meshing conditions.Accordingly,the load spectrum of the total radial load car-ried by the bearing was compiled.The mean value and class interval of the obtained load spectrum were found to vary non-monotonously with the speed and torque of gear mesh-ing,which was considered to be caused by the vibration of the shaft and the bearing cage.As the realistic service load input of bearing life assessment,the measured load spectrum under different gear meshing conditions can be used to pre-dict gearbox bearing life realistically based on the damage-equivalent principle and actual operating conditions. 展开更多
关键词 Gearbox bearing High-speed train Strain response Load spectra Gear meshing conditions
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部