期刊文献+
共找到112篇文章
< 1 2 6 >
每页显示 20 50 100
Numerical simulation on the multiphase flow and reoxidation of the molten steel in a two-strand tundish during ladle change
1
作者 Jingcheng Wang Zhentong Liu +2 位作者 Wei Chen Hongliang Chen Lifeng Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1540-1553,共14页
A 3D mathematical model was proposed to investigate the molten steel–slag–air multiphase flow in a two-strand slab continuous casting(CC)tundish during ladle change.The study focused on the exposure of the molten st... A 3D mathematical model was proposed to investigate the molten steel–slag–air multiphase flow in a two-strand slab continuous casting(CC)tundish during ladle change.The study focused on the exposure of the molten steel and the subsequent reoxidation occurrence.The exposure of the molten steel was calculated using the coupled realizable k–εmodel and volume of fluid(VOF)model.The diffusion of dissolved oxygen was determined by solving the user-defined scalar(UDS)equation.Moreover,the user-defined function(UDF)was used to describe the source term in the UDS equation and determine the oxidation rate and oxidation position.The effect of the refilling speed on the molten steel exposure and dissolved oxygen content was also discussed.Increasing the refilling speed during ladle change reduced the refilling time and the exposure duration of the molten steel.However,the elevated refilling speed enlarged the slag eyes and increased the average dissolved oxygen content within the tundish,thereby exacerbating the reoxidation phenomenon.In addition,the time required for the molten steel with a high dissolved oxygen content to exit the tundish varied with the refilling speed.When the inlet speed was 3.0 m·s^(-1)during ladle change,the molten steel with a high dissolved oxygen content exited the outlet in a short period,reaching a maximum dissolved oxygen content of 0.000525wt%.Conversely,when the inlet speed was 1.8 m·s^(-1),the maximum dissolved oxygen content was 0.000382wt%.The refilling speed during the ladle change process must be appropriately decreased to minimize reoxidation effects and enhance the steel product quality. 展开更多
关键词 TUNDISH ladle change REOXIDATION multiphase flow numerical simulation
下载PDF
Mass-Based Environmental Factor and Energy Assessment of Microwave-Assisted Synthesized Transition Metal Nanostructures
2
作者 Victor J. Law 《American Journal of Analytical Chemistry》 CAS 2024年第6期201-218,共18页
This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy... This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy budget (measured in kJ) on the horizontal axes and process density (measured in kJg−1) on the vertical axes. These two axes allow both mass usage efficiency (Environmental-Factor) and energy efficiency to be evaluated for a range of microwave applicator and metal synthesis. The metrics are allied to the: second, sixth and eleventh principle of the twelve principle of Green Chemistry. This analytical approach to microwave synthesis (widely considered as a useful Green Chemistry energy source) allows a quantified dynamic environmental quotient to be given to renewable plant-based biomass associated with the reduction of the metal precursors. Thus allowing a degree of quantification of claimed “eco-friendly” and “sustainable” synthesis with regard to waste production and energy usage. 展开更多
关键词 Microwave-Assisted Synthesis Transition Metals Nanostructures Allometry Scaling Power-Law Signature Green Chemistry
下载PDF
Bulk preparation of free-standing single-iron-atom catalysts directly as the air electrodes for high-performance zinc-air batteries 被引量:1
3
作者 Hong-Bo Zhang Yu Meng +11 位作者 Hong Zhong Lili Zhang Shichao Ding Lingzhe Fang Tao Li Yi Mei Peng-Xiang Hou Chang Liu Scott P.Beckman Yuehe Lin Hui-Ming Cheng Jin-Cheng Li 《Carbon Energy》 SCIE CSCD 2023年第5期57-66,共10页
The keen interest in fuel cells and metal-air batteries stimulates a great deal of research on the development of a cost-efficient and high-performance catalyst as an alternative to traditional Pt to boost the sluggis... The keen interest in fuel cells and metal-air batteries stimulates a great deal of research on the development of a cost-efficient and high-performance catalyst as an alternative to traditional Pt to boost the sluggish oxygen reduction reaction(ORR)at the cathode.Herein,we report a facile and scalable strategy for the large-scale preparation of a free-standing and flexible porous atomically dispersed Fe-N-doped carbon microtube(FeSAC/PCMT)sponge.Benefiting from its unique structure that greatly facilitates the catalytic kinetics,mass transport,and electron transfer,our FeSAC/PCMT electrode exhibits excellent performance with an ORR potential of 0.942 V at^(-3) mA cm^(-2).When the FeSAC/PCMT sponge was directly used as an oxygen electrode for liquid-state and flexible solid-state zinc-air batteries,high peak power densities of 183.1 and 58.0 mW cm^(-2) were respectively achieved,better than its powdery counterpart and commercial Pt/C catalyst.Experimental and theoretical investigation results demonstrate that such ultrahigh ORR performance can be attributed to atomically dispersed Fe-N_(5) species in FeSAC/PCMT.This study presents a cost-effective and scalable strategy for the fabrication of highly efficient and flexible oxygen electrodes,provides a significant new insight into the catalytic mechanisms,and helps to realize significant advances in energy devices. 展开更多
关键词 atomic Fe-N_(5)species free-standing electrode large-scale preparation oxygen reduction reaction zinc-air battery
下载PDF
Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing 被引量:9
4
作者 Yangyang Guo Gaofeng Quan +4 位作者 Mert Celikin Lingbao Ren Yuhang Zhan Lingling Fan Houhong Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第7期1930-1940,共11页
To maximize the benefits of wire arc additive manufacturing(WAAM)processes,the effect of post-deposition heat treatment on the microstructure and mechanical properties of WAAM AZ80M magnesium(Mg)alloy was investigated... To maximize the benefits of wire arc additive manufacturing(WAAM)processes,the effect of post-deposition heat treatment on the microstructure and mechanical properties of WAAM AZ80M magnesium(Mg)alloy was investigated.Three different heat treatment procedures(T4,T5 and T6)were performed.According to the results,after T4 heat treatment,the microsegregation of alloying elements was improved with the eutectic structure dissolved.Samples after T5 heat treatment inherited the net-like distribution of secondary phases similar to the as-deposited sample,where the eutectic structure covering the interdendritic regions and theβ-phase precipitated around the eutectic structure.After T6 heat treatment,the tinyβ-phases re-precipitated from the matrix and distributed in inner and outer of the grains.The hardness distribution of the samples went through T4 and T6 heat treatment was more uniform in comparison to that of T5 heat treated samples.The tensile test showed that the T6 heat treatment improved the strength and ductility,and the anisotropy between horizontal and vertical can be eliminated.Moreover,T4 treated samples exhibited highest ductility. 展开更多
关键词 Wire arc additive manufacturing AZ80M magnesium alloy Heat treatment MICROSTRUCTURE Mechanical properties
下载PDF
Prediction and Verifcation of Forming Limit Diagrams Based on a Modifed Shear Failure Criterion
5
作者 Haibo Wang Zipeng Wang +1 位作者 Yu Yan Yuanhui Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期364-373,共10页
The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the o... The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the original shear failure criterion is efective and simple.The original shear instability criterion can accurately predict the left area of the forming limit diagram but not the right area.In this study,in order to improve the accuracy of the original shear failure criterion,a modifed shear failure criterion was proposed based on in-depth analysis of the original shear failure criterion.The detailed improvement strategies of the shear failure criterion and the complete calculation process are given.Based on the modifed shear failure criterion and diferent constitutive equations,the theoretical forming limit of TRIP780 steel and 5754O aluminum alloy sheet metals are calculated.By comparing the theoretical and experimental results,it is shown that proposed modifed shear failure criterion can predict the right area of forming limit more reasonably than the original shear failure criterion.The efect of the pre-strain and constitutive equation on the forming limits are also analyzed in depth.The modifed shear failure criterion proposed in this study provides an alternative and reliable method to predict forming limit of sheet metals. 展开更多
关键词 Modifed shear failure criterion Sheet metal forming Forming limit diagram Loading path
下载PDF
Influence of substituting B_(2)O_(3) with Li_(2)O on the viscosity,structure and crystalline phase of low-reactivity mold flux
6
作者 Rongzhen Mo Xubin Zhang +2 位作者 Ying Ren Junjie Hu Lifeng Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第7期1320-1328,共9页
The low-reactivity mold flux with low SiO_(2)content is considered suitable for the continuous casting of high-aluminum steel since it can significantly reduce the reaction between Al in steel and SiO_(2)in mold flux.... The low-reactivity mold flux with low SiO_(2)content is considered suitable for the continuous casting of high-aluminum steel since it can significantly reduce the reaction between Al in steel and SiO_(2)in mold flux.However,the traditional low-reactivity mold flux still presents some problems such as high viscosity and strong crystallization tendency.In this study,the co-addition of Li_(2)O and B_(2)O_(3)in CaO–Al_(2)O_(3)–10wt%Si O_(2)based low-reactivity mold flux was proposed to improve properties of mold flux for high-aluminum steel,and the effect of Li_(2)O replacing B_(2)O_(3)on properties of mold flux was investigated.The viscosity of the mold flux with 2wt%Li_(2)O and 6wt%B_(2)O_(3)reached a minimum value of 0.07 Pa·s.The break temperature and melting point showed a similar trend with the viscosity.Besides,the melt structure and precipitation of the crystalline phase were studied using Raman and X-ray diffraction spectra to better understand the evolution of viscosity.It demonstrated that with increasing Li_(2)O content in the mold flux from 0 to 6 wt%,the degree of polymerization of aluminate and the aluminosilicate network structure increased because of increasing Li+released by Li_(2)O,indicating the added Li_(2)O was preferentially associated with Al^(3+)as a charge compensator.The precipitation of LiAlO_(2)crystalline phase gradually increased with the replacement of B_(2)O_(3)by Li_(2)O.Therefore,Li_(2)O content should be controlled below 2wt%to avoid LiAlO_(2)precipitation,which was harmful to the continuous casting of highaluminum steels. 展开更多
关键词 low-reactivity mold flux VISCOSITY STRUCTURE crystalline phase
下载PDF
In Situ Atomic Reconstruction Engineering Modulating Graphene-Like MXene-Based Multifunctional Electromagnetic Devices Covering Multi-Spectrum
7
作者 Ting‑Ting Liu Qi Zheng +4 位作者 Wen‑Qiang Cao Yu‑Ze Wang Min Zhang Quan‑Liang Zhao Mao‑Sheng Cao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期247-261,共15页
With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispec... With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispectral response of materials is a challenging and meaningful scientific question.In this study,MXene/TiO_(2)hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering.More importantly,MXene/TiO_(2)hybrids exhibit adjustable spectral responses in the GHz,infrared and visible spectrums,and several EM devices are constructed based on this.An antenna array provides excellent EM energy harvesting in multiple microwave bands,with|S11|up to−63.2 dB,and can be tuned by the degree of bending.An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband.An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14μm.This work can provide new inspiration for the design and development of multifunctional,multi-spectrum EM devices. 展开更多
关键词 Graphene-like MXene hybrids Multi-spectral response Multi-function antenna Ultra-wideband bandpass filter Electromagnetic device
下载PDF
Evolution of nonmetallic inclusions in 80-t 9CrMoCoB large-scale ingots during electroslag remelting process
8
作者 Shengchao Duan Min Joo Lee +3 位作者 Yao Su Wangzhong Mu Dong Soo Kim Joo Hyun Park 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1525-1539,共15页
In combination with theoretical calculations,experiments were conducted to investigate the evolution behavior of nonmetallic inclusions(NMIs)during the manufacture of large-scale heat-resistant steel ingots using 9CrM... In combination with theoretical calculations,experiments were conducted to investigate the evolution behavior of nonmetallic inclusions(NMIs)during the manufacture of large-scale heat-resistant steel ingots using 9CrMoCoB heat-resistant steel and CaF_(2)–CaO–Al_(2)O_(3)–SiO_(2)–B_(2)O_(3)electroslag remelting(ESR)-type slag in an 80-t industrial ESR furnace.The main types of NMI in the consumable electrode comprised pure alumina,a multiphase oxide consisting of an Al_(2)O_(3)core and liquid CaO–Al_(2)O_(3)–SiO_(2)–MnO shell,and M_(23)C_(6)carbides with an MnS core.The Al_(2)O_(3)and MnS inclusions had higher precipitation temperatures than the M_(23)C_(6)-type carbide under equilibrium and nonequilibrium solidification processes.Therefore,inclusions can act as nucleation sites for carbide layer precipitation.The ESR process completely removed the liquid CaO–Al_(2)O_(3)–SiO_(2)–MnO oxide and MnS inclusion with a carbide shell,and only the Al_(2)O_(3)inclusions and Al_(2)O_(3)core with a carbide shell occupied the remelted ingot.The M_(23)C_(6)-type carbides in steel were determined as Cr_(23)C_(6)based on the analysis of transmission electron microscopy results.The substitution of Cr with W,Fe,or/and Mo in the Cr_(23)C_(6)lattice caused slight changes in the lattice parameter of the Cr_(23)C_(6)carbide.Therefore,Cr_(21.34)Fe_(1.66)C_(6),(Cr_(19)W_(4)C_(6),Cr_(18.4)Mo_(4.6)C_(6),and Cr_(16)Fe_(5)Mo_(2)C_(6)can match the fraction pattern of Cr_(23)C_(6)carbide.The Al_(2)O_(3)inclusions in the remelted ingot formed due to the reduction of CaO,SiO_(2),and MnO components in the liquid inclusion.The increased Al content in liquid steel or the higher supersaturation degree of Al_(2)O_(3)precipitation in the remelted ingot than that in the electrode can be attributed to the evaporation of CaF_(2)and the increase in CaO content in the ESR-type slag. 展开更多
关键词 nonmetallic inclusion heat-resistant steel electroslag remelting M_(23)C_(6) carbide MnS inclusion supersaturation degree
下载PDF
Functionally graded structure of a nitride-strengthened Mg_(2)Si-based hybrid composite
9
作者 Jeongho Yang Woongbeom Heogh +15 位作者 Hogi Ju Sukhyun Kang Tae-Sik Jang Hyun-Do Jung Mohammad Jahazi Seung Chul Han Seong Je Park Hyoung Seop Kim Susmita Bose Amit Bandyopadhyay Martin Byung-Guk Jun Young Won Kim Dae-kyeom Kim Rigoberto CAdvincula Clodualdo Aranas Jr Sang Hoon Kim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1239-1256,共18页
The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in orde... The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations. 展开更多
关键词 Laser powder bed fusion Mg_(2)Si-SiC/nitride hybrid composite Both the thermal diffusion-and chemical reaction-based metallurgy Functionally graded structure Compositional gradient Wear resistance.
下载PDF
Effect of oxide inclusions on MnS precipitates and tensile mechanical property of high-strength low-alloy steel
10
作者 Xiao-yong Gao Hong Wei Li-feng Zhang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2024年第5期1210-1220,共11页
The key role of oxide inclusions on the microstructure and mechanical property of a high-strength low-alloy steel was investigated.The field emission scanning electron microscope equipped with energy-dispersive spectr... The key role of oxide inclusions on the microstructure and mechanical property of a high-strength low-alloy steel was investigated.The field emission scanning electron microscope equipped with energy-dispersive spectrometry was used to characterize MnS precipitates.Oxide inclusions play an important role in the shape control of MnS precipitates.More oxides fovored to decrease the size and the aspect ratio of MnS precipitates.With less oxide inclusions in the steel,approximately over 16.7%MnS precipitates were with aspect ratio a>5 and pure MnS precipitates accounted for 75.9%in number.However,with more oxide inclusions in the steel,only 7.4%MnS precipitates were with a>5 and pure MnS precipitates accounted for 60.1%in number.Refinement of MnS by oxide inclusions improved the strength and inhibited the anisotropy.More oxide inclusions in the steel increased the yield strength and tensile strength of the steel in both longitudinal and transverse directions,and lowered the anisotropy of the mechanical property. 展开更多
关键词 High-strength low-alloy steel MNS Oxide inclusion Mechanical property ANISOTROPY
原文传递
A protein-enabled protective film with functions of self-adapting and anion-anchoring for stabilizing lithium-metal batteries 被引量:2
11
作者 Chenxu Wang Xuewei Fu +2 位作者 Shengnan Lin Jin Liu Wei-Hong Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期485-495,I0013,共12页
Practical implementations of rechargeable lithium(Li)metal batteries have long been plagued by multiple problems of Li anode,such as Li dendrite growth,large volume change,low Coulombic efficiency.Here,we report a pro... Practical implementations of rechargeable lithium(Li)metal batteries have long been plagued by multiple problems of Li anode,such as Li dendrite growth,large volume change,low Coulombic efficiency.Here,we report a protein-enabled film that can provide effective protection for Li metal.The protective film with an integrated design of high flexibility,strong adhesion and high Li-ion transference number(0.80)is fabricated by incorporating denatured zein(corn protein)with polyethylene oxide(PEO)acting as an age nt for sustaining the denatured protein chains against refolding via the intermolecular interactions between them.Thus,a conformable zein-enabled protective film(zein@PEO)with simultaneous en hancement in flexibility,modulus and adhesion strength is gen erated to offer both functi ons of self-adapting and anion-anchoring abilities.The results show that the zein@PEO film is able to accommodate the volume change,reduce the side reactions,and homogenize the ion deposition.Benefiting from these significant properties/fu nctions,the Li/Cu cell with the zein@PEO film delivers prolonged cycle life for over 500 hours with stable performance.Paired with LiMn_(2)O_(4) cathode,the capacity,cycle stability and rate performance of the cell are remarkably improved as well,demonstrati ng the effectiveness in stabilizing Li metal batteries. 展开更多
关键词 ZEIN Self-adapting FLEXIBILITY Lithium metal Lithium dendrite
下载PDF
Effect of cooling rate on morphology and type of vanadium-containing phases in Al-10V master alloy 被引量:2
12
作者 Qing-feng Zhu Yi Meng +3 位作者 Yan-lei Kang Shu-ping Kong Yang-peng Ou Yu-bo Zuo 《China Foundry》 SCIE 2019年第5期300-306,共7页
Effects of cooling rates on the morphology, sizes and species of primary vanadium-containing phases in Al-10V master alloys were investigated. The results show that the primary vanadium-containing phases with differen... Effects of cooling rates on the morphology, sizes and species of primary vanadium-containing phases in Al-10V master alloys were investigated. The results show that the primary vanadium-containing phases with different morphologies and compositions present in Al-10V master alloys at different cooling rates with the pouring temperature of 1,170 °C. When the Al-10V master alloy is solidified in the refractory mold at a cooling rate of 2 °C·s-1, the vanadium-containing phases are mainly plate-like Al10V phases, with the average size of 100.0 μm in the center and 93.2 μm at the edge of the ingot. When the master alloy is solidified in the graphite mold at a cooling rate of 24.3 °C·s-1, the primary vanadium-containing phases are dendritic Al3V phases, with the average length of 297.0 μm for the first dendrite in the center and 275.0 μm at the edge of the ingot. The secondary dendrite arm spacing (SDAS) is 9.5 μm in the center and 9.3 μm at the edge of the ingot, respectively. When the solidification is carried out in the copper mould at a cooling rate of 45.7 °C·s-1, the primary vanadium-containing phases are also Al3V phases but with smaller size, compared with that prepared at the cooling rate of 24.3 °C·s-1. As a result, the average length is 190.0 μm for the first dendrite in the center and 150.0 μm at the edge of the ingot. The SDAS is 9.8 μm in the center and 4.4 μm at the edge of the ingot, respectively. 展开更多
关键词 Al-V master alloy cooling rate vanadium-containing phase SOLIDIFICATION
下载PDF
Quasi in-situ EBSD analysis of twinning-detwinning and slip behaviors in textured AZ31 magnesium alloy subjected to compressive-tensile loading 被引量:2
13
作者 Yuzhi Zhu Dewen Hou Qizhen Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第4期956-964,共9页
Twinning and detwinning behavior,together with slip behavior,are studied in a textured AZ31 magnesium alloy under compressive and tensile strains along the rolling direction(RD)after each interrupted mechanical test v... Twinning and detwinning behavior,together with slip behavior,are studied in a textured AZ31 magnesium alloy under compressive and tensile strains along the rolling direction(RD)after each interrupted mechanical test via quasi in-situ electron backscattered diffraction technique.The results show that twinning firstly takes place under the compressive strain along the RD.With the increasing compressive strain,{1012}tensile twins firstly nucleate,then propagate,and finally thicken.While under a reversed tensile strain along the RD,detwinning occurs.No nucleation happens during detwinning.Thus,tensile twins can detwin at lower tensile strain,followed by thinning,shortening,and vanishing.Slips are also activated to accommodate the plastic deformation.In the matrix,prismatic slip can only dominate at relatively high strains.Otherwise,basal slip dominates.While in the twins,prismatic slip can activate at lower strains,which is ascribed to the texture reorientation. 展开更多
关键词 Magnesium alloy TWINNING Detwinning Prismatic slip quasi in-situ EBSD
下载PDF
Effect of laser heating on the microstructure and hardness of TRIP590advanced high strength steel used for roll forming 被引量:1
14
作者 王海波 Jin Pengcheng +1 位作者 Yan Yu Li Qiang 《High Technology Letters》 EI CAS 2015年第4期429-432,共4页
TRIP590 advanced high strength steel sheets were heated by laser with different powers.Changes of the microstructure and the hardness of TRIP590 steel under laser heating with different powers were investigated by met... TRIP590 advanced high strength steel sheets were heated by laser with different powers.Changes of the microstructure and the hardness of TRIP590 steel under laser heating with different powers were investigated by metallographic microscope,scanning electron microscope,and hardness tester.The purpose was to study the effect of laser power on microstructure and hardness of TRIP590 steel.It is shown that the power of laser plays an important role on the microstructure and hardness of heated steel sheets.The results are helpful to determine suitable power for the laser auxiliary forming of Trip590 steel in order to obtain uniform microstructure and high hardness. 展开更多
关键词 高强度钢板 显微组织 激光加热 硬度 扫描电子显微镜 激光功率 金相显微镜 微观结构
下载PDF
FEM simulation and experimental verification of roll forming and springback process under complex contact conditions 被引量:1
15
作者 阎昱 Wu Qingyuan +1 位作者 Ai Zhengqing Jia Fanghui 《High Technology Letters》 EI CAS 2015年第4期433-438,共6页
The application of advanced high strength steel(AHSS) has an important significance in the development of the lightweight of automobile,but the parts made of AHSS usually have defects,such as fracture and large amount... The application of advanced high strength steel(AHSS) has an important significance in the development of the lightweight of automobile,but the parts made of AHSS usually have defects,such as fracture and large amount of springback,etc.In this paper,a model of multi-pass roll forming and springback process of AHSS is established with finite element software ABAQUS.Then a roll forming experiment is performed,and simulation and experimental results have been compared and analyzed.The model is established under complex contact conditions,including self-contact condition.The results shows that during the process of sheet bending,large Mises stresses appear at bending corners.The smaller the bending radius is,the larger the Mises stress and strain are.Thickness of sheet metal changes differendy if the bending radius is different.When the bending radius exceeds a certain limit,the change tendency of the sheet thickness turns from increase to decrease. 展开更多
关键词 回弹过程 接触条件 辊弯成形 有限元模拟 试验验证 弯曲半径 ABAQUS 金属板材
下载PDF
Microwave Detection, Disruption, and Inactivation of Microorganisms 被引量:2
16
作者 Victor J. Law Denis P. Dowling 《American Journal of Analytical Chemistry》 2022年第4期135-161,共27页
This paper reviews three complex interactions between microwave energy and microorganisms (bacteria, fungi, and viruses). The first interaction comprises the detection of viruses within human blood using a 50-Ohm tran... This paper reviews three complex interactions between microwave energy and microorganisms (bacteria, fungi, and viruses). The first interaction comprises the detection of viruses within human blood using a 50-Ohm transmission-line vector net-analyzer (typically 0 to 10 dBm @ 2 to 8.5 GHz) where the blood is placed within a test chamber that acts as a non-50-Ohm discontinuity. The second interaction employs 1 to 6.5 W @ 8 to 26 GHz for microwave feed-horn illumination to inactivate microorganisms at an applied power density of 10 to 100 mW<sup>-2</sup>. The third interaction is within multi-mode microwave ovens, where microorganism cell membrane disruption occurs at a few 100 s of W @ 2.45 GHz and microorganism inactivation between 300 to 1800 W @ 2.45 GHz. Within the first microwave interaction, blood relaxation processes are examined. Whereas in the latter two microwave interactions, the following disruption, and inactivation mechanisms are examined: chemical cellular lysis and, microwave resonant absorption causing cell wall rupture, and thermodynamic analysis in terms of process energy budget and suspension energy density. In addition, oven-specific parameters are discussed. 展开更多
关键词 Bacteria Fungi Virus Hepatitis C Virus Human Immunodeficiency Virus DETECTION Disruption Inactivation N95 Respirator Microwave Oven
下载PDF
Porous metal implants: processing,properties, and challenges 被引量:5
17
作者 Amit Bandyopadhyay Indranath Mitra +2 位作者 Jose D Avila Mahadev Upadhyayula Susmita Bose 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期441-483,共43页
Porous and functionally graded materials have seen extensive applications in modern biomedical devices—allowing for improved site-specific performance;their appreciable mechanical,corrosive,and biocompatible properti... Porous and functionally graded materials have seen extensive applications in modern biomedical devices—allowing for improved site-specific performance;their appreciable mechanical,corrosive,and biocompatible properties are highly sought after for lightweight and high-strength load-bearing orthopedic and dental implants.Examples of such porous materials are metals,ceramics,and polymers.Although,easy to manufacture and lightweight,porous polymers do not inherently exhibit the required mechanical strength for hard tissue repair or replacement.Alternatively,porous ceramics are brittle and do not possess the required fatigue resistance.On the other hand,porous biocompatible metals have shown tailorable strength,fatigue resistance,and toughness.Thereby,a significant interest in investigating the manufacturing challenges of porous metals has taken place in recent years.Past research has shown that once the advantages of porous metallic structures in the orthopedic implant industry have been realized,their biological and biomechanical compatibility—with the host bone—has been followed up with extensive methodical research.Various manufacturing methods for porous or functionally graded metals are discussed and compared in this review,specifically,how the manufacturing process influences microstructure,graded composition,porosity,biocompatibility,and mechanical properties.Most of the studies discussed in this review are related to porous structures for bone implant applications;however,the understanding of these investigations may also be extended to other devices beyond the biomedical field. 展开更多
关键词 porous metals load-bearing implants 3d printing additive manufacturing mechanical properties biological properties
下载PDF
In situ observation of the dissolution kinetics of Al_(2)O_(3) particles in CaO–Al_(2)O_(3)–SiO_(2) slags using laser confocal scanning microscopy 被引量:3
18
作者 Changyu Ren Caide Huang +1 位作者 Lifeng Zhang Ying Ren 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期345-353,共9页
The dissolution kinetics of Al_(2)O_(3) in CaO-Al_(2)O_(3) SiOslags was studied using a high-temperature confocal scanning laser microscope at 1773 to 1873 K.The results show that the controlling step during the Al_(2... The dissolution kinetics of Al_(2)O_(3) in CaO-Al_(2)O_(3) SiOslags was studied using a high-temperature confocal scanning laser microscope at 1773 to 1873 K.The results show that the controlling step during the Al_(2)O_(3) dissolution was the diffusionin molten slag.It was found that the dissolution curves of Al_(2)O_(3) particles were hardly agreed with the traditional boundary layer diffusion model with the increase of the CaO/Al_(2)O_(3) ratio of slag.A modified diffusion equation considering slag viscosity was developed to study the dissolution mechanism of Al_(2)O_(3) in slag.Diffusion coefficients of Al_(2)O_(3) in slag were calculated as 2.8×10to 4.1×10m~2/s at the temperature of 1773-1873 K.The dissolution rate of Al_(2)O_(3) increased with higher temperature,CaO/Al_(2)O_(3),and particle size.A new model was shown to be v_(Al_(2)O_(3))=0.16×r_(0)^(1.58)×x^(3.52)×(T-T_(mp))^(1.11)to predict the dissolution rate and the total dissolution time of Al_(2)O_(3) inclusions with various sizes,where vAl_(2)O_(3) is the dissolution rate of Al_(2)O_(3) in volume,μm^(3)/s;x is the value of CaO/Al_(2)O_(3) mass ratio;R_(0) is the initial radius of Al_(2)O_(3),μm;T is the temperature,K;T_(mp) is the melting point of slag,K. 展开更多
关键词 INCLUSION dissolution kinetics confocal scanning laser microscope refining slag
下载PDF
Recent advances in interfacial modification of zinc anode for aqueous rechargeable zinc ion batteries 被引量:4
19
作者 Qing Wen Hao Fu +8 位作者 Ru-de Cui He-Zhang Chen Rui-Han Ji Lin-Bo Tang Cheng Yan Jing Mao Ke-Hua Dai Xia-Hui Zhang Jun-Chao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期287-303,I0009,共18页
To tackle energy crisis and achieve sustainable development, aqueous rechargeable zinc ion batteries have gained widespread attention in large-scale energy storage for their low cost, high safety, high theoretical cap... To tackle energy crisis and achieve sustainable development, aqueous rechargeable zinc ion batteries have gained widespread attention in large-scale energy storage for their low cost, high safety, high theoretical capacity, and environmental compatibility in recent years. However, zinc anode in aqueous zinc ion batteries is still facing several challenges such as dendrite growth and side reactions(e.g., hydrogen evolution), which cause poor reversibility and the failure of batteries. To address these issues, interfacial modification of Zn anodes has received great attention by tuning the interaction between the anode and the electrolyte. Herein, we present recent advances in the interfacial modification of zinc anode in this review. Besides, the challenges of reported approaches of interfacial modification are also discussed.Finally, we provide an outlook for the exploration of novel zinc anode for aqueous zinc ion batteries.We hope that this review will be helpful in designing and fabricating dendrite-free and hydrogenevolution-free Zn anodes and promoting the practical application of aqueous rechargeable zinc ion batteries. 展开更多
关键词 Zinc ion batteries Zinc anode Interfacial modification Functional coating
下载PDF
Kinematic error modeling and error compensation of desktop 3D printer
20
作者 Shane Keaveney Pat Connolly Eoin D.O'Cearbhaill 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2018年第3期180-186,共7页
Desktop 3D printers have revolutionized how designers and makers prototype and manufacture certain products.Highly popular fuse deposition modeling(FDM)desktop printers have enabled a shift to low-cost consumer goods ... Desktop 3D printers have revolutionized how designers and makers prototype and manufacture certain products.Highly popular fuse deposition modeling(FDM)desktop printers have enabled a shift to low-cost consumer goods markets,through reduced capital equipment investment and consumable material costs.However,with this drive to reduce costs,the computer numerical control(CNC)systems implemented in FDM printers are often compromised by poor accuracy and contouring errors.This condition is most critical as users begin to use 3D-printed components in load-bearing applications or to perform mechanical functions.Improved methods of low-cost 3D printer calibration are needed before their open-design potential can be realized in applications,including 3D-printed orthotics and prosthetics.This paper applies methodologies associated with high-precision CNC machining systems,namely,kinematic error modeling and compensation coupled with standardized test methods from ISO230-4,such as the ballbar for kinematic and dynamic error measurements,to examine the influence and feasibility for use on low-cost CNC/3D printing platforms.Recently,the U.S.Food and Drug Administration's"Technical considerations for additive manufactured medical devices"highlighted the need to develop standards specific to additive manufacturing in regulated manufacturing environments.This paper shows the benefits of the methods described within ISO230-4 for error assessment,alongside applying kinematic error modeling and compensation to the popular kinematic configuration of an Ultimaker 3D printer.A Renishaw ballbar QC10 is used to quantify the Ultimaker's errors and thereby populate the error model.This method quantifies machine errors and populates these in a mathematical model of the CNC system.Then,a post-processor can be used to compensate the printing code.Subsequently,the ballbar is used to demonstrate the dramatic impact of the error compensation model on the accuracy and contouring of the Ultimaker printer with 58%reduction in overall circularity error and 90%reduction in squareness error. 展开更多
关键词 3D PRINTING accuracy KINEMATIC ERROR modeling KINEMATIC ERROR compensation BALLBAR FDM3D PRINTING ISO230-4
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部