With continuous advancements in interventional radiology,considerable progress has been made in transarterial therapies for hepatocellular carcinoma(HCC)in recent years,and an increasing number of research papers on t...With continuous advancements in interventional radiology,considerable progress has been made in transarterial therapies for hepatocellular carcinoma(HCC)in recent years,and an increasing number of research papers on transarterial therapies for HCC have been published.In this editorial,we comment on the article by Ma et al published in the recent issue of the World Journal of Gastrointestinal Oncology:“Efficacy and predictive factors of transarterial chemoembolization combined with lenvatinib plus programmed cell death protein-1 inhibition for unresectable HCC”.We focus specifically on the current research status and future directions of transarterial therapies.In the future,more studies are needed to determine the optimal transarterial local treatment for HCC.With the emergence of checkpoint immunotherapy modalities,it is expected that the results of trials of transarterial local therapy combined with systemic therapy will bring new hope to HCC patients.展开更多
Epigenomic imbalance drives abnormal transcriptional processes,promoting the onset and progression of cancer.Although defective gene regulation generally affects carcinogenesis and tumor suppression networks,tumor imm...Epigenomic imbalance drives abnormal transcriptional processes,promoting the onset and progression of cancer.Although defective gene regulation generally affects carcinogenesis and tumor suppression networks,tumor immunogenicity and immune cells involved in antitumor responses may also be affected by epigenomic changes,which may have significant implications for the development and application of epigenetic therapy,cancer immunotherapy,and their combinations.Herein,we focus on the impact of epigenetic regulation on tumor immune cell function and the role of key abnormal epigenetic processes,DNA methylation,histone post-translational modification,and chromatin structure in tumor immunogenicity,and introduce these epigenetic research methods.We emphasize the value of small-molecule inhibitors of epigenetic modulators in enhancing antitumor immune responses and discuss the challenges of developing treatment plans that combine epigenetic therapy and immuno-therapy through the complex interaction between cancer epigenetics and cancer immunology.展开更多
Objective: Accurate detection and classification of breast lesions in early stage is crucial to timely formulate effective treatments for patients. We aim to develop a fully automatic system to detect and classify bre...Objective: Accurate detection and classification of breast lesions in early stage is crucial to timely formulate effective treatments for patients. We aim to develop a fully automatic system to detect and classify breast lesions using multiple contrast-enhanced mammography(CEM) images.Methods: In this study, a total of 1,903 females who underwent CEM examination from three hospitals were enrolled as the training set, internal testing set, pooled external testing set and prospective testing set. Here we developed a CEM-based multiprocess detection and classification system(MDCS) to perform the task of detection and classification of breast lesions. In this system, we introduced an innovative auxiliary feature fusion(AFF)algorithm that could intelligently incorporates multiple types of information from CEM images. The average freeresponse receiver operating characteristic score(AFROC-Score) was presented to validate system’s detection performance, and the performance of classification was evaluated by area under the receiver operating characteristic curve(AUC). Furthermore, we assessed the diagnostic value of MDCS through visual analysis of disputed cases,comparing its performance and efficiency with that of radiologists and exploring whether it could augment radiologists’ performance.Results: On the pooled external and prospective testing sets, MDCS always maintained a high standalone performance, with AFROC-Scores of 0.953 and 0.963 for detection task, and AUCs for classification were 0.909[95% confidence interval(95% CI): 0.822-0.996] and 0.912(95% CI: 0.840-0.985), respectively. It also achieved higher sensitivity than all senior radiologists and higher specificity than all junior radiologists on pooled external and prospective testing sets. Moreover, MDCS performed superior diagnostic efficiency with an average reading time of 5 seconds, compared to the radiologists’ average reading time of 3.2 min. The average performance of all radiologists was also improved to varying degrees with MDCS assistance.Conclusions: MDCS demonstrated excellent performance in the detection and classification of breast lesions,and greatly enhanced the overall performance of radiologists.展开更多
During the chemotherapy of tumors,the cytotoxic effect of drugs is vital to kill tumor cells,and the delivery of a chemotherapeutic agent is of great importance for optimal therapeutic effects.The high in vivo clearan...During the chemotherapy of tumors,the cytotoxic effect of drugs is vital to kill tumor cells,and the delivery of a chemotherapeutic agent is of great importance for optimal therapeutic effects.The high in vivo clearance rate and low delivery efficiency of conventional chemotherapeutic agents affect the therapeutic effect.In recent years,the responsive drug delivery nanosystem has received increasing concern owing to its excellent biocompatibility,stable delivery performance,and controlled drug release strategies.To lucidly explain the cytocidal and immunotherapeutic effects of such responsive nanosystems in breast cancer,this review discusses the various stimuli and responses of drug-loaded liposomal nanosystems.The light/magnetic response of drug-loaded bionic membranes nanosystems and the heat/magnetic response of drug-loaded iron oxide nanosystems are also elaborated.Their cancer cell-killing efficacy and antitumor immunotherapeutic effects are also scrutinized.展开更多
The process of wound healing is routinely evaluated by histological evaluation in the clinic,which may cause scarring and secondary injury.Reflectance confocal microscopy(RCM)represents a noninvasive,real-time imaging...The process of wound healing is routinely evaluated by histological evaluation in the clinic,which may cause scarring and secondary injury.Reflectance confocal microscopy(RCM)represents a noninvasive,real-time imaging technique that allows in vivo evaluation of the skin.Traditional RCM was wide-probe-based,which limited its application on uneven and covered skin.In this study,we report the development of a portable reflectance confocal microscope(PRCM)in which all components were assembled in a handheld shell.Although the size and weight of the PRCM were reduced based on the use of a microelectromechanical system,the resolution was kept at 0.91μm,and the field of view of the system was 343μm×532μm.When used in vivo,the PRCM was able to visualize cellular and nuclear morphology for both mouse and human skin.PRCM evaluations were then performed on wounds after topically applied mesenchymal stem cells(MSCs)or saline treatment.The PRCM allowed visualization of the formation of collagen bundles,re-epithelization from the wound edge to the wound bed,and hair follicle regeneration,which were consistent with histological evaluations.Therefore,we offer new insights into monitoring the effects of topically applied MSCs on the process of wound healing by using PRCM.This study illustrates that the newly developed PRCM represents a promising device for real-time,noninvasive monitoring of the dynamic process of wound healing,which demonstrates its potential to diagnose,monitor,or predict disease in clinical wound therapy.展开更多
AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for a...AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for advanced glycation end-products(RAGE)/nuclear factor-kappa B(NF-κB)signaling pathway.METHODS:A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye.Eighty male Sprague Dawley were randomly divided into five groups:sham group(n=8),RIR group(n=28),RIR+NAS group(n=28),RIR+FPS-ZM1 group(n=8)and RIR+NAS+FPS-ZM1 group(n=8).The therapeutic effects of NAS were examined by hematoxylin-eosin(H&E)staining,and retinal ganglion cells(RGCs)counting.The expression of interleukin 1 beta(IL-1β),HMGB1,RAGE,and nod-like receptor 3(NLRP3)proteins and the phosphorylation of nuclear factorkappa B(p-NF-κB)were analyzed by immunohistochemistry staining and Western blot analysis.The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay(ELISA).RESULTS:H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats.With NAS therapy,the HMGB1 and RAGE expression decreased significantly,and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression.Additionally,NAS exhibited an anti-inflammatory effect by reducing IL-1βexpression.The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression,so as to the IL-1βexpression and retinal edema,accompanied by an increase of RGCs in RIR rats.CONCLUSION:NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway,which may be a useful therapeutic target for retinal disease.展开更多
Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition;this phenomenon is known as cerebral ischemia-reperfusion injury.Curre...Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition;this phenomenon is known as cerebral ischemia-reperfusion injury.Current studies have elucidated the neuroprotective role of the sirtuin protein family(Sirtuins)in modulating cerebral ischemia-reperfusion injury.However,the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration.In this review,the origin and research progress of Sirtuins are summarized,suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury,including inflammation,oxidative stress,blood-brain barrier damage,apoptosis,pyroptosis,and autophagy.The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways,such as nuclear factor-kappa B signaling,oxidative stress mediated by adenosine monophosphate-activated protein kinase,and the forkhead box O.This review also summarizes the potential of endogenous substances,such as RNA and hormones,drugs,dietary supplements,and emerging therapies that regulate Sirtuins expression.This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors.While Sirtuins show promise as a potential target for the treatment of cerebral ischemiareperfusion injury,most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans,potentially influencing the efficacy of Sirtuinstargeting drug therapies.Overall,this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury.展开更多
Background The prognosis and survival of patients with lung cancer are likely to deteriorate with metastasis.Using deep-learning in the detection of lymph node metastasis can facilitate the noninvasive calculation of ...Background The prognosis and survival of patients with lung cancer are likely to deteriorate with metastasis.Using deep-learning in the detection of lymph node metastasis can facilitate the noninvasive calculation of the likelihood of such metastasis,thereby providing clinicians with crucial information to enhance diagnostic precision and ultimately improve patient survival and prognosis.Methods In total,623 eligible patients were recruited from two medical institutions.Seven deep learning models,namely Alex,GoogLeNet,Resnet18,Resnet101,Vgg16,Vgg19,and MobileNetv3(small),were utilized to extract deep image histological features.The dimensionality of the extracted features was then reduced using the Spearman correlation coefficient(r≥0.9)and Least Absolute Shrinkage and Selection Operator.Eleven machine learning methods,namely Support Vector Machine,K-nearest neighbor,Random Forest,Extra Trees,XGBoost,LightGBM,Naive Bayes,AdaBoost,Gradient Boosting Decision Tree,Linear Regression,and Multilayer Perceptron,were employed to construct classification prediction models for the filtered final features.The diagnostic performances of the models were assessed using various metrics,including accuracy,area under the receiver operating characteristic curve,sensitivity,specificity,positive predictive value,and negative predictive value.Calibration and decision-curve analyses were also performed.Results The present study demonstrated that using deep radiomic features extracted from Vgg16,in conjunction with a prediction model constructed via a linear regression algorithm,effectively distinguished the status of mediastinal lymph nodes in patients with lung cancer.The performance of the model was evaluated based on various metrics,including accuracy,area under the receiver operating characteristic curve,sensitivity,specificity,positive predictive value,and negative predictive value,which yielded values of 0.808,0.834,0.851,0.745,0.829,and 0.776,respectively.The validation set of the model was assessed using clinical decision curves,calibration curves,and confusion matrices,which collectively demonstrated the model's stability and accuracy.Conclusion In this study,information on the deep radiomics of Vgg16 was obtained from computed tomography images,and the linear regression method was able to accurately diagnose mediastinal lymph node metastases in patients with lung cancer.展开更多
BACKGROUND While tuberculosis(TB)itself is a common disease,isolated TB of the liver is a rare entity.Tubercular involvement of the liver is more commonly a part of a disseminated disease of the hepatic parenchyma.In ...BACKGROUND While tuberculosis(TB)itself is a common disease,isolated TB of the liver is a rare entity.Tubercular involvement of the liver is more commonly a part of a disseminated disease of the hepatic parenchyma.In contrast,isolated hepatic TB spread through the portal vein from the gastrointestinal tract is seldom encountered in clinical practice,with only a few sporadic cases and short series available in the current literature.Vascular complications,such as portal vein thrombosis(PVT),have rarely been reported previously.CASE SUMMARY A 22-year-old man was hospitalized with complaints of a 3-mo history of fever and weight loss of approximately 10 kg.He had a 10-year hepatitis B virus(HBV)infection in his medical history.Contrast-enhanced computed tomography(CECT)confirmed hepatosplenomegaly,with hypodensity of the right lobe of the liver and 2.1 cm thrombosis of the right branch of the portal vein.A liver biopsy showed epithelioid granulomas with a background of caseating necrosis.ZiehlNelson staining showed acid-fast bacilli within the granulomas.The patient was diagnosed with isolated hepatic TB with PVT.Anti-TB therapy(ATT),including isoniazid,rifapentine,ethambutol,and pyrazinamide,was administered.Along with ATT,the patient was treated with entecavir as an antiviral medication against HBV and dabigatran as an anticoagulant.He remained asymptomatic,and follow-up sonography of the abdomen at 4 mo showed complete resolution of the PVT.CONCLUSION Upon diagnosis of hepatic TB associated with PVT and HBV coinfection,ATT and anticoagulants should be initiated to prevent subsequent portal hypertension.Antiviral therapy against HBV should also be administered to prevent severe hepatic injury.展开更多
Atherosclerosis(AS)is a primary cause of morbidity and mortality all over the world.Molecular imaging techniques can enable early localization and diagnosis of atherosclerosis plaques.Recent newly developed chitooligo...Atherosclerosis(AS)is a primary cause of morbidity and mortality all over the world.Molecular imaging techniques can enable early localization and diagnosis of atherosclerosis plaques.Recent newly developed chitooligosaccharides(CSO)is considered to be capable of target mannose receptors on the surface of macrophages and to inhibit foam cell formation.Here we present a targeting magnetic resonance imaging(MRI)nanoprobe,which was successfully constructed with polyacrylic acid(PAA)modified nanometer iron oxide(Fe_(3)O_(4))as the core,and coating with CSO molecules,possessing the abilities of targeted MRI and specifically inhibition of the formation of foamy macrophages in the atherosclerotic process.The experimental results showed that the distributions of PAA-Fe_(3)O_(4) and CSO-PAA-Fe_(3)O_(4) were uniform and the corresponding sizes were about 5.93 nm and 8.15 nm,respectively.The Fourier transform infrared spectra(FTIR)testified the CSO was coupled with PAA-Fe_(3)O_(4) successfully.After coupled with CSO,the r1 of PAA-Fe_(3)O_(4) was increased from 5.317 mM s-1 to 6.147 mM s-1,indicating their potential as MRI contrast agent.Oil Red O staining and total cholesterols(TC)determination showed that CSO-PAA-Fe_(3)O_(4) could significantly inhibit the foaming process of RAW264.7 cells induced by oxidatively modified low density lipoprotein(ox-LDL).In vitro cellular MRI displayed that,compared with PAA-Fe_(3)O_(4),CSO-PAA-Fe_(3)O_(4) could lower the T1 relaxation time of RAW264.7 cells better.In summary,construction of CSO-PAA-Fe_(3)O_(4) nanoprobe in this study could realize the targeted MRI of macrophages and inhibition of ox-LDL induced macrophage foaming process.This will provide a new avenue in the diagnosis and treatment of AS.展开更多
A novel surface wave plasma (SWP) source excited with cylindrical Teflon waveguide has been developed in our previous work. The plasma characteristics have been simply studied. In this work, our experimental device ...A novel surface wave plasma (SWP) source excited with cylindrical Teflon waveguide has been developed in our previous work. The plasma characteristics have been simply studied. In this work, our experimental device has been significantly improved by replacing the Teflon waveguide with a quartz rod, and then better microwave coupling and higher gas purity can be obtained during plasma discharge. The plasma spatial distributions, both in radial and axial directions, have been measured and the effect of gas pressure has been investigated. Plasma density profiles indicate that this plasma source can produce uniform plasma in an axial direction at low pressure, which shows its potential in plasma processing on a curved surface such as an inner tube wall. A simplified circular waveguide model has been used to explain the principle of plasma excitation. The distinguishing features and potential application of this kind of plasma source with a hardware improvement have been shown.展开更多
Klebsiella has been considered as initiator of AS (ankylosing spondylitis) for nearly four decades. This study aimed to demonstrate that Klebsiella triggers ERS (endoplasmic reticulum stress) and HLA-B27 heavy cha...Klebsiella has been considered as initiator of AS (ankylosing spondylitis) for nearly four decades. This study aimed to demonstrate that Klebsiella triggers ERS (endoplasmic reticulum stress) and HLA-B27 heavy chain misfolding. CA46 cells or splenocytes obtained from wild-type, MyD88/ or TLR9/ mice were stimulated with KP (Klebsiella pneumoniae) or its components including CPS (capsule polysaccharide), LPS (lipopolysaccharide), and KP gDNA (genomic deoxyribonucleic acid) respectively for 24 h and 48 h. The activation of ERS-related signaling was detected by Western blotting or RT-PCR, and the level of misfolded HLA-B27 was determined by non-reducing protein gel electrophoresis and Western blotting. The protein expression of BiP/Grp78 and calreticulin, the alternative splicing of XBP-1 mRNA (messenger ribonucleic acid), and the activation of caspase-12 and p38 were increased in a dose-dependent manner in HLA-B27-expressing CA46 cells after treatment with decapsulated KP. We also demonstrate that the EP, S-inducing effects occur via the TLR (Toll-like receptor)/MyD88-dependent signaling pathway. Significantly, HLA-B27 misfolding was also detected in decapsulated KP-treated B27-expressing cells. These results suggest that the non-antigen-specific induction of ERS and B27 misfoiding through TLR/MyD88 signaling might promote KP antigen-initiated autoreactive responses via the presentation of misfolded B27, and that small-molecules targeting TLRs might have potential as novel therapeutic agents for AS.展开更多
Non-invasive image-guided precise photothermal/photodynamic therapy(PTT/PDT)has been proven to be an effective local treatment modality but incompetent against metastases.Hence,the combination of local PTT/PDT and sys...Non-invasive image-guided precise photothermal/photodynamic therapy(PTT/PDT)has been proven to be an effective local treatment modality but incompetent against metastases.Hence,the combination of local PTT/PDT and systemic immunotherapy would be a promising strategy for tumor eradication.Herein,a magnetic resonance imaging(MRI)-visualized PTT/PDT agent(SIDP NMs)was constructed,and the efficacy of its multimodal combination with a programmed cell death 1(PD-1)inhibitor in the treatment of melanoma and metastases was studied.Due to the hydrophobic encapsulation of indocyanine green within the micellar core,SIDP NMs exhibited excellent photothermal/photodynamic properties and stability under an 808 nm near-infrared laser.In vitro cell experiments showed that SIDP NMs had a good killing effect.After incubating with B16-F10 cells for 24 h and irradiating with an 808-nm laser for 10 min,cell viability decreased significantly.Magnetic resonance imaging experiments in melanoma-bearing mice have shown that the dynamic distribution of SIDP NMs in tumor tissue could be monitored by T2WI and T2-MAP non-invasively due to the presence of superparamagnetic iron oxide nanocrystal in SIDP NMs.When the 808 nm laser was irradiated at the maximum focusing time point shown by MRI,the temperature of the tumor area rapidly increased from 32℃to 60.7℃in 5 min.In mouse melanoma ablation and distant tumor immunotherapy studies,SIDP NMs provided excellent MRI-guided PTT/PDT results and,when combined with PD-1 inhibitor,have great potential to cure primary tumors and eradicate metastases.展开更多
Objective: To compare the effects and safety of conventional transarterial chemoembolization(c TACE) and yttrium-90 transarterial radioembolization [TARE(90 Y)] for hepatocellular carcinoma(HCC)Methods: Nine high-qual...Objective: To compare the effects and safety of conventional transarterial chemoembolization(c TACE) and yttrium-90 transarterial radioembolization [TARE(90 Y)] for hepatocellular carcinoma(HCC)Methods: Nine high-quality observational studies, one low bias-risk randomized controlled trial(RCT), and one moderate biasrisk RCT included 1,652 patients [c TACE, 1,124; TARE(90 Y), 528], from whom data were extracted for this systematic review and meta-analysis.Results: The extracted study outcomes included 1-year and 2-year overall survival(OS) rates, objective responses(ORs), and serious adverse events(AEs). 1-year OS rates: OR = 0.939, 95 % CI: 0.705-1.251, P = 0.66. 2-year OS rates: overall pooled OR =0.641, 95% CI: 0.382-1.075, P = 0.092; observational study subgroup OR = 0.575, 95% CI: 0.336-0.984, P = 0.043; RCT subgroup OR* = 0.641, 95% CI: 0.382-1.075, P = 0.346. OR: overall pooled OR = 0.781, 95% CI: 0.454-1.343, P = 0.371; m RECIST subgroup OR = 0.584, 95 % CI: 0.349-0.976, P = 0.040; WHO subgroup OR = 1.065; 95% CI: 0.500-2.268, P = 0.870. Serious AEs: overall pooled RR = 1.477, 95% CI: 0.864-2.526, P = 0.154; RCT subgroup RR = 0.680, 95% CI: 0.325-1.423, P = 0.306; observational study subgroup RR = 1.925; 95 % CI: 0.978-3.788, P = 0.058.Conclusions: TARE(90 Y) increased 2-year OS rates in the observational subgroup and resulted in better OR rates, according to m RECIST criteria, in comparison with c TACE. Furthermore, a lower risk of AEs was observed for TARE(90 Y) than for c TACE.展开更多
Early diagnosis of osteoarthritis(OA)is critical for effective cartilage repair.However,lack of blood vessels in articular cartilage poses a barrier to contrast agent delivery and subsequent diagnostic imaging.To addr...Early diagnosis of osteoarthritis(OA)is critical for effective cartilage repair.However,lack of blood vessels in articular cartilage poses a barrier to contrast agent delivery and subsequent diagnostic imaging.To address this challenge,we proposed to develop ultra-small superparamagnetic iron oxide nanoparticles(SPIONs,4 nm)that can penetrate into the matrix of articular cartilage,and further modified with the peptide ligand WYRGRL(particle size,5.9 nm),which allows SPIONs to bind to type II collagen in the cartilage matrix and increase the retention of probes.Type II collagen in the cartilage matrix is gradually lost with the progression of OA,consequently,the binding of peptide-modified ultra-small SPIONs to type II collagen in the OA cartilage matrix is less,thus presenting different magnetic resonance(MR)signals in OA group from the normal ones.By introducing the AND logical operation,damaged cartilage can be differentiated from the surrounding normal tissue on T1 and T2 AND logical map of MR images,and this was also verified in histology studies.Overall,this work provides an effective strategy for delivering nanosized imaging agents to articular cartilage,which could potentially be used to diagnosis joint-related diseases such as osteoarthritis.展开更多
The paper presents an improved tensor-based active contour model in a variational level set formulation for medical image segmentation. In it, a new energy function is defined with a local intensity fitting term in in...The paper presents an improved tensor-based active contour model in a variational level set formulation for medical image segmentation. In it, a new energy function is defined with a local intensity fitting term in intensity inhomogeneity of the image, and with a global intensity fitting term in intensity homogeneity domain. Weighting factor is chosen to balance these two intensity fitting terms, which can be calculated automatically by local entropy. The level set regularization term is to replace contour curve to find the minimum of the energy function. Particularly, structure tensor is applied to describe the image, which overcomes the disadvantage of image feature without structure information.The experimental results show that our proposed method can segment image efficiently whether it presents intensity inhomogeneity or not and wherever the initial contour is. Moreover, compared with the Chan-Vese model and local binary fitting model, our proposed model not only handles better intensity inhomogeneity, but also is less sensitive to the location of initial contour.展开更多
One of the hallmarks of cancer is its inherently immunosuppressive microenvironment,which strategically manipulates surrounding immune cells,signaling molecules,and structural components to shield cancer cells from im...One of the hallmarks of cancer is its inherently immunosuppressive microenvironment,which strategically manipulates surrounding immune cells,signaling molecules,and structural components to shield cancer cells from immune attacks and foster tumor progression1.Such tumor microenvironment is characterized by the presence of immunosuppressive entities such as tumor-associated macrophages,T cells,tumor-associated neutrophils,and myeloid-derived suppressor cells(MDSCs),as well as metabolic alterations like hypoxia2 and elevated lactate levels3.展开更多
A systematic characterization of the similarities and differences among different methods for detecting structural brain abnormalities in schizophrenia,such as voxel-based morphometry(VBM),tensor-based morphometry(TBM...A systematic characterization of the similarities and differences among different methods for detecting structural brain abnormalities in schizophrenia,such as voxel-based morphometry(VBM),tensor-based morphometry(TBM),and projection-based thickness(PBT),is important for understanding the brain pathology in schizophrenia and for developing effective biomarkers for a diagnosis of schizophrenia.However,such studies are still lacking.Here,we performed VBM,TBM,and PBT analyses on T1-weighted brain MR images acquired from 116 patients with schizophrenia and 116 healthy controls.We found that,although all methods detected wide-spread structural changes,different methods captured different information-only 10.35%of the grey matter changes in cortex were detected by all three methods,and VBM only detected 11.36%of the white matter changes detected by TBM.Further,pattern classification between patients and controls revealed that combining different measures improved the classification accuracy(81.9%),indicating that fusion of different structural measures serves as a better neuroimaging marker for the objective diagnosis of schizophrenia.展开更多
Superparamagnetic iron oxide(SPIO)nanoparticles are excellent magnetic resonance contrast agents and surface engineering can expand their applications.When covered with amphiphilic alkyl-polyethyleneimine(PEI),the mod...Superparamagnetic iron oxide(SPIO)nanoparticles are excellent magnetic resonance contrast agents and surface engineering can expand their applications.When covered with amphiphilic alkyl-polyethyleneimine(PEI),the modified SPIO nanoparticles can be used as MRI visible gene/drug delivery carriers and cell tracking probes.However,the positively charged amines of PEI can also cause cytotoxicity and restricts their further applications.In this study,we used lactose to modify amphiphilic low molecular weight polyethylenimine(C_(12-)PEI_(2K))at different lactosylation degree.It was found that the N-alkyl-PEI-lactobionic acid wrapped SPIO nanocomposites show better cell viability without compromising their labelling efficacy as well as MR imaging capability in RAW 264.7 cells,comparing to the unsubstituted ones.Besides,we found the PEI induced cell autophagy can be reduced via lactose modification,indicating the increased cell viability might rely on down-regulating autophagy.Thus,our findings provide a new approach to overcome the toxicity of PEI wrapped SPIO nanocomposites by lactose modification.展开更多
In this work, the perovskite solar cells(PSCs) were fabricated with the bandgap-tunable(FA)_x(MA)_(1-x)PbI_3 absorber layers through a facile two-stage deposition route.The doping was realized by adding the formamidin...In this work, the perovskite solar cells(PSCs) were fabricated with the bandgap-tunable(FA)_x(MA)_(1-x)PbI_3 absorber layers through a facile two-stage deposition route.The doping was realized by adding the formamidinium iodide(FAI) into a precursor MAI solution.Both the surface morphology and electrochemical impedance spectra(EIS) were conducted to evaluate the absorber layers or solar cells.After the optimization, the best PSC performance of 14.73% was achieved at a nominal FAI content of 12.5 at.%.The performance enhancement was attributed to both the enhancement of visible light harvesting and carrier transport capability.Besides, the stability of a PSC device based on the single MAPbI_3 absorber layer was also investigated, and a power conversion efficiency(PCE) of 11.27 % remained even after laying in vacuum for 10 days.展开更多
基金Project of City-University Science and Technology Strategic Cooperation of Nanchong City,No.20SXQT0324。
文摘With continuous advancements in interventional radiology,considerable progress has been made in transarterial therapies for hepatocellular carcinoma(HCC)in recent years,and an increasing number of research papers on transarterial therapies for HCC have been published.In this editorial,we comment on the article by Ma et al published in the recent issue of the World Journal of Gastrointestinal Oncology:“Efficacy and predictive factors of transarterial chemoembolization combined with lenvatinib plus programmed cell death protein-1 inhibition for unresectable HCC”.We focus specifically on the current research status and future directions of transarterial therapies.In the future,more studies are needed to determine the optimal transarterial local treatment for HCC.With the emergence of checkpoint immunotherapy modalities,it is expected that the results of trials of transarterial local therapy combined with systemic therapy will bring new hope to HCC patients.
基金supported by the Startup Foundation for Junior Faculty,Nankai University(Grant No.:63191439)the National Natural Science Foundation of China(Grant Nos.:32100418,3210040345)+1 种基金The Health Commission Foundation of China(Grant No.:2018ZX10712001-017)the Chongqing Medical College Natural Fund(Grant Nos.:ygz2019302 and ygz2019305).
文摘Epigenomic imbalance drives abnormal transcriptional processes,promoting the onset and progression of cancer.Although defective gene regulation generally affects carcinogenesis and tumor suppression networks,tumor immunogenicity and immune cells involved in antitumor responses may also be affected by epigenomic changes,which may have significant implications for the development and application of epigenetic therapy,cancer immunotherapy,and their combinations.Herein,we focus on the impact of epigenetic regulation on tumor immune cell function and the role of key abnormal epigenetic processes,DNA methylation,histone post-translational modification,and chromatin structure in tumor immunogenicity,and introduce these epigenetic research methods.We emphasize the value of small-molecule inhibitors of epigenetic modulators in enhancing antitumor immune responses and discuss the challenges of developing treatment plans that combine epigenetic therapy and immuno-therapy through the complex interaction between cancer epigenetics and cancer immunology.
基金supported by the National Natural Science Foundation of China (No.82001775, 82371933)the Natural Science Foundation of Shandong Province of China (No.ZR2021MH120)+1 种基金the Special Fund for Breast Disease Research of Shandong Medical Association (No.YXH2021ZX055)the Taishan Scholar Foundation of Shandong Province of China (No.tsgn202211378)。
文摘Objective: Accurate detection and classification of breast lesions in early stage is crucial to timely formulate effective treatments for patients. We aim to develop a fully automatic system to detect and classify breast lesions using multiple contrast-enhanced mammography(CEM) images.Methods: In this study, a total of 1,903 females who underwent CEM examination from three hospitals were enrolled as the training set, internal testing set, pooled external testing set and prospective testing set. Here we developed a CEM-based multiprocess detection and classification system(MDCS) to perform the task of detection and classification of breast lesions. In this system, we introduced an innovative auxiliary feature fusion(AFF)algorithm that could intelligently incorporates multiple types of information from CEM images. The average freeresponse receiver operating characteristic score(AFROC-Score) was presented to validate system’s detection performance, and the performance of classification was evaluated by area under the receiver operating characteristic curve(AUC). Furthermore, we assessed the diagnostic value of MDCS through visual analysis of disputed cases,comparing its performance and efficiency with that of radiologists and exploring whether it could augment radiologists’ performance.Results: On the pooled external and prospective testing sets, MDCS always maintained a high standalone performance, with AFROC-Scores of 0.953 and 0.963 for detection task, and AUCs for classification were 0.909[95% confidence interval(95% CI): 0.822-0.996] and 0.912(95% CI: 0.840-0.985), respectively. It also achieved higher sensitivity than all senior radiologists and higher specificity than all junior radiologists on pooled external and prospective testing sets. Moreover, MDCS performed superior diagnostic efficiency with an average reading time of 5 seconds, compared to the radiologists’ average reading time of 3.2 min. The average performance of all radiologists was also improved to varying degrees with MDCS assistance.Conclusions: MDCS demonstrated excellent performance in the detection and classification of breast lesions,and greatly enhanced the overall performance of radiologists.
基金funded by the Basic Scientific Research Funds of Department of Education of Zhejiang Province(KYQN202103 and KYZD202103)A Project Supported by Scientific Research Fund of Zhejiang Provincial Education Department(Y202249203)+4 种基金General Program of the National Natural Science Foundation of China(61976075 to XX)the Key Research and Development Program of Zhejiang Province(2019C03002 to XX)National Innovation and Entrepreneurship Training Program for College Students(202213023011)Innovation and Entrepreneurship Training Program for College Students of Zhejiang Province(S202213023052)Zhejiang Provincial Natural Science Foundation of China under Grant No.LTGY23H180019.
文摘During the chemotherapy of tumors,the cytotoxic effect of drugs is vital to kill tumor cells,and the delivery of a chemotherapeutic agent is of great importance for optimal therapeutic effects.The high in vivo clearance rate and low delivery efficiency of conventional chemotherapeutic agents affect the therapeutic effect.In recent years,the responsive drug delivery nanosystem has received increasing concern owing to its excellent biocompatibility,stable delivery performance,and controlled drug release strategies.To lucidly explain the cytocidal and immunotherapeutic effects of such responsive nanosystems in breast cancer,this review discusses the various stimuli and responses of drug-loaded liposomal nanosystems.The light/magnetic response of drug-loaded bionic membranes nanosystems and the heat/magnetic response of drug-loaded iron oxide nanosystems are also elaborated.Their cancer cell-killing efficacy and antitumor immunotherapeutic effects are also scrutinized.
基金the National Key Research andDevelopment Program of China(No.2021YFA1101100)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA16020807)+3 种基金the Major Innovative Research Team of Suzhou,China(No.ZXT2019007)Suzhou Institute of Biomedical Engineering and Technology(SIBET)Jilin City Science and Technology Cooperation Project(No.E0550104)Science and Technology Innovation Talents in Universities of Henan Province and Doctor of Entrepreneurship and Innovation Program of Jiangsu Province in the year of 2020.
文摘The process of wound healing is routinely evaluated by histological evaluation in the clinic,which may cause scarring and secondary injury.Reflectance confocal microscopy(RCM)represents a noninvasive,real-time imaging technique that allows in vivo evaluation of the skin.Traditional RCM was wide-probe-based,which limited its application on uneven and covered skin.In this study,we report the development of a portable reflectance confocal microscope(PRCM)in which all components were assembled in a handheld shell.Although the size and weight of the PRCM were reduced based on the use of a microelectromechanical system,the resolution was kept at 0.91μm,and the field of view of the system was 343μm×532μm.When used in vivo,the PRCM was able to visualize cellular and nuclear morphology for both mouse and human skin.PRCM evaluations were then performed on wounds after topically applied mesenchymal stem cells(MSCs)or saline treatment.The PRCM allowed visualization of the formation of collagen bundles,re-epithelization from the wound edge to the wound bed,and hair follicle regeneration,which were consistent with histological evaluations.Therefore,we offer new insights into monitoring the effects of topically applied MSCs on the process of wound healing by using PRCM.This study illustrates that the newly developed PRCM represents a promising device for real-time,noninvasive monitoring of the dynamic process of wound healing,which demonstrates its potential to diagnose,monitor,or predict disease in clinical wound therapy.
基金Supported by the National Natural Science Foundation of China(No.82071888)the Natural Science Foundation of Shandong Province(No.ZR2021MH351,No.ZR2020MH074)+1 种基金the Introduction and Cultivation Project for Young Innovative Talents in Shandong ProvinceWeifang Science and Technology Development Plan(No.2021GX057).
文摘AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for advanced glycation end-products(RAGE)/nuclear factor-kappa B(NF-κB)signaling pathway.METHODS:A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye.Eighty male Sprague Dawley were randomly divided into five groups:sham group(n=8),RIR group(n=28),RIR+NAS group(n=28),RIR+FPS-ZM1 group(n=8)and RIR+NAS+FPS-ZM1 group(n=8).The therapeutic effects of NAS were examined by hematoxylin-eosin(H&E)staining,and retinal ganglion cells(RGCs)counting.The expression of interleukin 1 beta(IL-1β),HMGB1,RAGE,and nod-like receptor 3(NLRP3)proteins and the phosphorylation of nuclear factorkappa B(p-NF-κB)were analyzed by immunohistochemistry staining and Western blot analysis.The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay(ELISA).RESULTS:H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats.With NAS therapy,the HMGB1 and RAGE expression decreased significantly,and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression.Additionally,NAS exhibited an anti-inflammatory effect by reducing IL-1βexpression.The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression,so as to the IL-1βexpression and retinal edema,accompanied by an increase of RGCs in RIR rats.CONCLUSION:NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway,which may be a useful therapeutic target for retinal disease.
文摘Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition;this phenomenon is known as cerebral ischemia-reperfusion injury.Current studies have elucidated the neuroprotective role of the sirtuin protein family(Sirtuins)in modulating cerebral ischemia-reperfusion injury.However,the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration.In this review,the origin and research progress of Sirtuins are summarized,suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury,including inflammation,oxidative stress,blood-brain barrier damage,apoptosis,pyroptosis,and autophagy.The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways,such as nuclear factor-kappa B signaling,oxidative stress mediated by adenosine monophosphate-activated protein kinase,and the forkhead box O.This review also summarizes the potential of endogenous substances,such as RNA and hormones,drugs,dietary supplements,and emerging therapies that regulate Sirtuins expression.This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors.While Sirtuins show promise as a potential target for the treatment of cerebral ischemiareperfusion injury,most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans,potentially influencing the efficacy of Sirtuinstargeting drug therapies.Overall,this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury.
基金the Science and Technology Funding Project of Hunan Province,China(2023JJ50410)(HX)Key Laboratory of Tumor Precision Medicine,Hunan colleges and Universities Project(2019-379)(QL).
文摘Background The prognosis and survival of patients with lung cancer are likely to deteriorate with metastasis.Using deep-learning in the detection of lymph node metastasis can facilitate the noninvasive calculation of the likelihood of such metastasis,thereby providing clinicians with crucial information to enhance diagnostic precision and ultimately improve patient survival and prognosis.Methods In total,623 eligible patients were recruited from two medical institutions.Seven deep learning models,namely Alex,GoogLeNet,Resnet18,Resnet101,Vgg16,Vgg19,and MobileNetv3(small),were utilized to extract deep image histological features.The dimensionality of the extracted features was then reduced using the Spearman correlation coefficient(r≥0.9)and Least Absolute Shrinkage and Selection Operator.Eleven machine learning methods,namely Support Vector Machine,K-nearest neighbor,Random Forest,Extra Trees,XGBoost,LightGBM,Naive Bayes,AdaBoost,Gradient Boosting Decision Tree,Linear Regression,and Multilayer Perceptron,were employed to construct classification prediction models for the filtered final features.The diagnostic performances of the models were assessed using various metrics,including accuracy,area under the receiver operating characteristic curve,sensitivity,specificity,positive predictive value,and negative predictive value.Calibration and decision-curve analyses were also performed.Results The present study demonstrated that using deep radiomic features extracted from Vgg16,in conjunction with a prediction model constructed via a linear regression algorithm,effectively distinguished the status of mediastinal lymph nodes in patients with lung cancer.The performance of the model was evaluated based on various metrics,including accuracy,area under the receiver operating characteristic curve,sensitivity,specificity,positive predictive value,and negative predictive value,which yielded values of 0.808,0.834,0.851,0.745,0.829,and 0.776,respectively.The validation set of the model was assessed using clinical decision curves,calibration curves,and confusion matrices,which collectively demonstrated the model's stability and accuracy.Conclusion In this study,information on the deep radiomics of Vgg16 was obtained from computed tomography images,and the linear regression method was able to accurately diagnose mediastinal lymph node metastases in patients with lung cancer.
文摘BACKGROUND While tuberculosis(TB)itself is a common disease,isolated TB of the liver is a rare entity.Tubercular involvement of the liver is more commonly a part of a disseminated disease of the hepatic parenchyma.In contrast,isolated hepatic TB spread through the portal vein from the gastrointestinal tract is seldom encountered in clinical practice,with only a few sporadic cases and short series available in the current literature.Vascular complications,such as portal vein thrombosis(PVT),have rarely been reported previously.CASE SUMMARY A 22-year-old man was hospitalized with complaints of a 3-mo history of fever and weight loss of approximately 10 kg.He had a 10-year hepatitis B virus(HBV)infection in his medical history.Contrast-enhanced computed tomography(CECT)confirmed hepatosplenomegaly,with hypodensity of the right lobe of the liver and 2.1 cm thrombosis of the right branch of the portal vein.A liver biopsy showed epithelioid granulomas with a background of caseating necrosis.ZiehlNelson staining showed acid-fast bacilli within the granulomas.The patient was diagnosed with isolated hepatic TB with PVT.Anti-TB therapy(ATT),including isoniazid,rifapentine,ethambutol,and pyrazinamide,was administered.Along with ATT,the patient was treated with entecavir as an antiviral medication against HBV and dabigatran as an anticoagulant.He remained asymptomatic,and follow-up sonography of the abdomen at 4 mo showed complete resolution of the PVT.CONCLUSION Upon diagnosis of hepatic TB associated with PVT and HBV coinfection,ATT and anticoagulants should be initiated to prevent subsequent portal hypertension.Antiviral therapy against HBV should also be administered to prevent severe hepatic injury.
基金funded by Innovation and Entrepreneurship Training Program of College Students(201910313120H)financially supported by Outstanding Youth Project of Natural Science Foundation of Jiangsu Province(BK20170054)National Demonstration Center for Experimental Basic Medical Science Education(Xuzhou Medical University).
文摘Atherosclerosis(AS)is a primary cause of morbidity and mortality all over the world.Molecular imaging techniques can enable early localization and diagnosis of atherosclerosis plaques.Recent newly developed chitooligosaccharides(CSO)is considered to be capable of target mannose receptors on the surface of macrophages and to inhibit foam cell formation.Here we present a targeting magnetic resonance imaging(MRI)nanoprobe,which was successfully constructed with polyacrylic acid(PAA)modified nanometer iron oxide(Fe_(3)O_(4))as the core,and coating with CSO molecules,possessing the abilities of targeted MRI and specifically inhibition of the formation of foamy macrophages in the atherosclerotic process.The experimental results showed that the distributions of PAA-Fe_(3)O_(4) and CSO-PAA-Fe_(3)O_(4) were uniform and the corresponding sizes were about 5.93 nm and 8.15 nm,respectively.The Fourier transform infrared spectra(FTIR)testified the CSO was coupled with PAA-Fe_(3)O_(4) successfully.After coupled with CSO,the r1 of PAA-Fe_(3)O_(4) was increased from 5.317 mM s-1 to 6.147 mM s-1,indicating their potential as MRI contrast agent.Oil Red O staining and total cholesterols(TC)determination showed that CSO-PAA-Fe_(3)O_(4) could significantly inhibit the foaming process of RAW264.7 cells induced by oxidatively modified low density lipoprotein(ox-LDL).In vitro cellular MRI displayed that,compared with PAA-Fe_(3)O_(4),CSO-PAA-Fe_(3)O_(4) could lower the T1 relaxation time of RAW264.7 cells better.In summary,construction of CSO-PAA-Fe_(3)O_(4) nanoprobe in this study could realize the targeted MRI of macrophages and inhibition of ox-LDL induced macrophage foaming process.This will provide a new avenue in the diagnosis and treatment of AS.
基金supported in part by National Natural Science of Foundation of China(Nos.11005021,51177017 and 11175049)the Grants-in-Aid for Scientific Research of Japan Society for the Promotion of Science(No.21110010)+1 种基金the Fudan University Excellent Doctoral Research Program(985 project)the Ph.D Programs Foundation of Ministry of Education of China(No.20120071110031)
文摘A novel surface wave plasma (SWP) source excited with cylindrical Teflon waveguide has been developed in our previous work. The plasma characteristics have been simply studied. In this work, our experimental device has been significantly improved by replacing the Teflon waveguide with a quartz rod, and then better microwave coupling and higher gas purity can be obtained during plasma discharge. The plasma spatial distributions, both in radial and axial directions, have been measured and the effect of gas pressure has been investigated. Plasma density profiles indicate that this plasma source can produce uniform plasma in an axial direction at low pressure, which shows its potential in plasma processing on a curved surface such as an inner tube wall. A simplified circular waveguide model has been used to explain the principle of plasma excitation. The distinguishing features and potential application of this kind of plasma source with a hardware improvement have been shown.
文摘Klebsiella has been considered as initiator of AS (ankylosing spondylitis) for nearly four decades. This study aimed to demonstrate that Klebsiella triggers ERS (endoplasmic reticulum stress) and HLA-B27 heavy chain misfolding. CA46 cells or splenocytes obtained from wild-type, MyD88/ or TLR9/ mice were stimulated with KP (Klebsiella pneumoniae) or its components including CPS (capsule polysaccharide), LPS (lipopolysaccharide), and KP gDNA (genomic deoxyribonucleic acid) respectively for 24 h and 48 h. The activation of ERS-related signaling was detected by Western blotting or RT-PCR, and the level of misfolded HLA-B27 was determined by non-reducing protein gel electrophoresis and Western blotting. The protein expression of BiP/Grp78 and calreticulin, the alternative splicing of XBP-1 mRNA (messenger ribonucleic acid), and the activation of caspase-12 and p38 were increased in a dose-dependent manner in HLA-B27-expressing CA46 cells after treatment with decapsulated KP. We also demonstrate that the EP, S-inducing effects occur via the TLR (Toll-like receptor)/MyD88-dependent signaling pathway. Significantly, HLA-B27 misfolding was also detected in decapsulated KP-treated B27-expressing cells. These results suggest that the non-antigen-specific induction of ERS and B27 misfoiding through TLR/MyD88 signaling might promote KP antigen-initiated autoreactive responses via the presentation of misfolded B27, and that small-molecules targeting TLRs might have potential as novel therapeutic agents for AS.
基金supported by National Natural Science Foundation of China[grant number 81601490]Natural Science Foundation of Sichuan Province[grant number 2022NSFSC0636]+3 种基金Science and Technology Project of Municipal School Strategic Cooperation,Nanchong[grant number 20SXQT0306]Pre-research Project of North Sichuan Medical College[grant number CBY19-YZ05]Open Research Program of Antibiotic Research and Reevaluation Key Laboratory of Sichuan Province[grant number ARRLKF20-03]Scientific Research Start-up Fund of North Sichuan Medical College[grant number CBY22-QDA03].
文摘Non-invasive image-guided precise photothermal/photodynamic therapy(PTT/PDT)has been proven to be an effective local treatment modality but incompetent against metastases.Hence,the combination of local PTT/PDT and systemic immunotherapy would be a promising strategy for tumor eradication.Herein,a magnetic resonance imaging(MRI)-visualized PTT/PDT agent(SIDP NMs)was constructed,and the efficacy of its multimodal combination with a programmed cell death 1(PD-1)inhibitor in the treatment of melanoma and metastases was studied.Due to the hydrophobic encapsulation of indocyanine green within the micellar core,SIDP NMs exhibited excellent photothermal/photodynamic properties and stability under an 808 nm near-infrared laser.In vitro cell experiments showed that SIDP NMs had a good killing effect.After incubating with B16-F10 cells for 24 h and irradiating with an 808-nm laser for 10 min,cell viability decreased significantly.Magnetic resonance imaging experiments in melanoma-bearing mice have shown that the dynamic distribution of SIDP NMs in tumor tissue could be monitored by T2WI and T2-MAP non-invasively due to the presence of superparamagnetic iron oxide nanocrystal in SIDP NMs.When the 808 nm laser was irradiated at the maximum focusing time point shown by MRI,the temperature of the tumor area rapidly increased from 32℃to 60.7℃in 5 min.In mouse melanoma ablation and distant tumor immunotherapy studies,SIDP NMs provided excellent MRI-guided PTT/PDT results and,when combined with PD-1 inhibitor,have great potential to cure primary tumors and eradicate metastases.
文摘Objective: To compare the effects and safety of conventional transarterial chemoembolization(c TACE) and yttrium-90 transarterial radioembolization [TARE(90 Y)] for hepatocellular carcinoma(HCC)Methods: Nine high-quality observational studies, one low bias-risk randomized controlled trial(RCT), and one moderate biasrisk RCT included 1,652 patients [c TACE, 1,124; TARE(90 Y), 528], from whom data were extracted for this systematic review and meta-analysis.Results: The extracted study outcomes included 1-year and 2-year overall survival(OS) rates, objective responses(ORs), and serious adverse events(AEs). 1-year OS rates: OR = 0.939, 95 % CI: 0.705-1.251, P = 0.66. 2-year OS rates: overall pooled OR =0.641, 95% CI: 0.382-1.075, P = 0.092; observational study subgroup OR = 0.575, 95% CI: 0.336-0.984, P = 0.043; RCT subgroup OR* = 0.641, 95% CI: 0.382-1.075, P = 0.346. OR: overall pooled OR = 0.781, 95% CI: 0.454-1.343, P = 0.371; m RECIST subgroup OR = 0.584, 95 % CI: 0.349-0.976, P = 0.040; WHO subgroup OR = 1.065; 95% CI: 0.500-2.268, P = 0.870. Serious AEs: overall pooled RR = 1.477, 95% CI: 0.864-2.526, P = 0.154; RCT subgroup RR = 0.680, 95% CI: 0.325-1.423, P = 0.306; observational study subgroup RR = 1.925; 95 % CI: 0.978-3.788, P = 0.058.Conclusions: TARE(90 Y) increased 2-year OS rates in the observational subgroup and resulted in better OR rates, according to m RECIST criteria, in comparison with c TACE. Furthermore, a lower risk of AEs was observed for TARE(90 Y) than for c TACE.
基金supported by the National Natural Science Foundation of China(NSFC,No.52073192,81601490)the Innovative Research Groups of the National Natural Science Foundation of China(81621003).
文摘Early diagnosis of osteoarthritis(OA)is critical for effective cartilage repair.However,lack of blood vessels in articular cartilage poses a barrier to contrast agent delivery and subsequent diagnostic imaging.To address this challenge,we proposed to develop ultra-small superparamagnetic iron oxide nanoparticles(SPIONs,4 nm)that can penetrate into the matrix of articular cartilage,and further modified with the peptide ligand WYRGRL(particle size,5.9 nm),which allows SPIONs to bind to type II collagen in the cartilage matrix and increase the retention of probes.Type II collagen in the cartilage matrix is gradually lost with the progression of OA,consequently,the binding of peptide-modified ultra-small SPIONs to type II collagen in the OA cartilage matrix is less,thus presenting different magnetic resonance(MR)signals in OA group from the normal ones.By introducing the AND logical operation,damaged cartilage can be differentiated from the surrounding normal tissue on T1 and T2 AND logical map of MR images,and this was also verified in histology studies.Overall,this work provides an effective strategy for delivering nanosized imaging agents to articular cartilage,which could potentially be used to diagnosis joint-related diseases such as osteoarthritis.
基金Acknowledgments This work was supported by Natural Science Fundamental Research Project of Jiangsu Colleges and Universities under Grant 11KJB510026, and National Science Foundation of P. R. China under Grants 11275007 and 81000639.
文摘The paper presents an improved tensor-based active contour model in a variational level set formulation for medical image segmentation. In it, a new energy function is defined with a local intensity fitting term in intensity inhomogeneity of the image, and with a global intensity fitting term in intensity homogeneity domain. Weighting factor is chosen to balance these two intensity fitting terms, which can be calculated automatically by local entropy. The level set regularization term is to replace contour curve to find the minimum of the energy function. Particularly, structure tensor is applied to describe the image, which overcomes the disadvantage of image feature without structure information.The experimental results show that our proposed method can segment image efficiently whether it presents intensity inhomogeneity or not and wherever the initial contour is. Moreover, compared with the Chan-Vese model and local binary fitting model, our proposed model not only handles better intensity inhomogeneity, but also is less sensitive to the location of initial contour.
基金supported by the National Key Research and Development Program of China(2019YFA0709200)the National Natural Science Foundation of China(21874066)+3 种基金the Key Research and Development Program of Jiangsu Province(BE2021373,China)the Natural Science Foundation of Jiangsu Province(BK20200336,China)the State Key Laboratory of Analytical Chemistry for Life Science(5431ZZXM2304,China)the Program for Innovative Talents and Entrepreneur in Jiangsu(China).
文摘One of the hallmarks of cancer is its inherently immunosuppressive microenvironment,which strategically manipulates surrounding immune cells,signaling molecules,and structural components to shield cancer cells from immune attacks and foster tumor progression1.Such tumor microenvironment is characterized by the presence of immunosuppressive entities such as tumor-associated macrophages,T cells,tumor-associated neutrophils,and myeloid-derived suppressor cells(MDSCs),as well as metabolic alterations like hypoxia2 and elevated lactate levels3.
基金This work was supported by the National Key Research and Development Program of China(2017 YFC0909201 and 2018YFC1314300)the National Natural Science Foundation of China(81571659,81971694,81971599,81771818,81425013,and 81871052)and the Tianjin Key Technology R&D Program(17ZXMFSY00090).
文摘A systematic characterization of the similarities and differences among different methods for detecting structural brain abnormalities in schizophrenia,such as voxel-based morphometry(VBM),tensor-based morphometry(TBM),and projection-based thickness(PBT),is important for understanding the brain pathology in schizophrenia and for developing effective biomarkers for a diagnosis of schizophrenia.However,such studies are still lacking.Here,we performed VBM,TBM,and PBT analyses on T1-weighted brain MR images acquired from 116 patients with schizophrenia and 116 healthy controls.We found that,although all methods detected wide-spread structural changes,different methods captured different information-only 10.35%of the grey matter changes in cortex were detected by all three methods,and VBM only detected 11.36%of the white matter changes detected by TBM.Further,pattern classification between patients and controls revealed that combining different measures improved the classification accuracy(81.9%),indicating that fusion of different structural measures serves as a better neuroimaging marker for the objective diagnosis of schizophrenia.
基金This work was supported by grants from National Key Basic Research Program of China(2013CB933903)National Key Technology R&D Program(2012BAI23B08)and National Natural Science Foundation of China(20974065,51173117 and 50830107).
文摘Superparamagnetic iron oxide(SPIO)nanoparticles are excellent magnetic resonance contrast agents and surface engineering can expand their applications.When covered with amphiphilic alkyl-polyethyleneimine(PEI),the modified SPIO nanoparticles can be used as MRI visible gene/drug delivery carriers and cell tracking probes.However,the positively charged amines of PEI can also cause cytotoxicity and restricts their further applications.In this study,we used lactose to modify amphiphilic low molecular weight polyethylenimine(C_(12-)PEI_(2K))at different lactosylation degree.It was found that the N-alkyl-PEI-lactobionic acid wrapped SPIO nanocomposites show better cell viability without compromising their labelling efficacy as well as MR imaging capability in RAW 264.7 cells,comparing to the unsubstituted ones.Besides,we found the PEI induced cell autophagy can be reduced via lactose modification,indicating the increased cell viability might rely on down-regulating autophagy.Thus,our findings provide a new approach to overcome the toxicity of PEI wrapped SPIO nanocomposites by lactose modification.
基金supported by the Science and Technology Projects of Xuzhou City(No.KC14SM088)the Natural Science Fund for Colleges and Universities in Jiangsu Province(No.15KJB430031)
文摘In this work, the perovskite solar cells(PSCs) were fabricated with the bandgap-tunable(FA)_x(MA)_(1-x)PbI_3 absorber layers through a facile two-stage deposition route.The doping was realized by adding the formamidinium iodide(FAI) into a precursor MAI solution.Both the surface morphology and electrochemical impedance spectra(EIS) were conducted to evaluate the absorber layers or solar cells.After the optimization, the best PSC performance of 14.73% was achieved at a nominal FAI content of 12.5 at.%.The performance enhancement was attributed to both the enhancement of visible light harvesting and carrier transport capability.Besides, the stability of a PSC device based on the single MAPbI_3 absorber layer was also investigated, and a power conversion efficiency(PCE) of 11.27 % remained even after laying in vacuum for 10 days.